Use of multi-temporal and multi-sensor data for continental water body extraction in the context of the SWOT mission - Equipe Image, Modélisation, Analyse, GEométrie, Synthèse Accéder directement au contenu
Thèse Année : 2022

Use of multi-temporal and multi-sensor data for continental water body extraction in the context of the SWOT mission

Exploitation de données multi-temporelles et multi-capteurs pour l’extraction de surfaces d'eau continentales dans le contexte de la mission SWOT

Résumé

Spaceborne remote sensing provides hydrologists and decision-makers with data that are essential for understanding the water cycle and managing the associated resources and risks. The SWOT satellite, which is a collaboration between the French (CNES) and American (NASA, JPL) space agencies, is scheduled for launch in 2022 and will measure the height of lakes, rivers, and oceans with high spatial resolution. It will complement existing sensors, such as the SAR and optical constellations Sentinel-1 and 2, and in situ measurements. SWOT represents a technological breakthrough as it is the first satellite to carry a near-nadir swath altimeter. The estimation of water levels is done by interferometry on the SAR images acquired by SWOT. Detecting water in these images is therefore an essential step in processing SWOT data, but it can be very difficult, especially with low signal-to-noise ratios, or in the presence of unusual radiometries. In this thesis, we seek to develop new methods to make water detection more robust. To this end, we focus on the use of exogenous data to guide detection, the combination of multi-temporal and multi-sensor data and denoising approaches. The first proposed method exploits information from the river database used by SWOT (derived from GRWL) to detect narrow rivers in the image in a way that is robust to both noise in the image, potential errors in the database, and temporal changes. This method relies on a new linear structure detector, a least-cost path algorithm, and a new Conditional Random Field segmentation method that combines data attachment and regularization terms adapted to the problem. We also proposed a method derived from GrabCut that uses an a priori polygon containing a lake to detect it on a SAR image or a time series of SAR images. Within this framework, we also studied the use of a multi-temporal and multi-sensor combination between Sentinel-1 SAR and Sentinel-2 optical images. Finally, as part of a preliminary study on denoising methods applied to water detection, we studied the statistical properties of the geometric temporal mean and proposed an adaptation of the variational method MuLoG to denoise it.
La télédétection spatiale fournit aux hydrologues et aux décideurs des données indispensables à la compréhension du cycle de l’eau et à la gestion des ressources et risques associés. Le satellite SWOT, qui est une collaboration entre les agences spatiales françaises (CNES) et américaine (NASA, JPL), et dont le lancement est prévu en 2022 vise à mesurer la hauteur des lacs, rivières et océans avec une grande résolution spatiale. Il complétera ainsi les capteurs existants, comme les constellations SAR et optique Sentinel-1 et 2 et les relevés in situ. SWOT représente une rupture technologique car il est le premier satellite qui embarque un altimètre de fauchée quasi-nadir. Le calcul des hauteurs d’eau est fait par interférométrie sur les images SAR acquises par SWOT. La détection d’eau dans ces images est donc une étape essentielle du traitement des données SWOT, mais qui peut être difficile, en particulier avec un faible rapport signal sur bruit ou en présence de radiométries inhabituelles. Dans cette thèse, nous cherchons à développer de nouvelles méthodes pour rendre la détection d’eau plus robustes. Pour cela, nous nous intéressons à l’utilisation de données exogènes pour guider la détection, à la combinaison de données multi-temporelles et multi-capteurs et à des approches de débruitage. La première méthode proposée exploite les informations de la base de donnée des rivières utilisée par SWOT pour détecter les rivières fines dans l’image de façon robuste à la fois aux bruit dans l’image, aux erreurs éventuelles de la base de données et aux changements survenus. Cette méthode s’appuie sur un nouveau détecteur de structures linéiques, un algorithme de chemin de moindre coût et une nouvelle méthode de segmentation par CRF qui combine des termes d’attache aux données et de régularisation adaptés au problème. Nous avons également proposé une méthode dérivée des GrabCut qui utilise un polygone a priori contenant un lac pour le détecter sur une image SAR ou une série temporelle. Dans ce cadre, nous avons également étudié le recours à une combinaison multi-temporelle et multi-capteurs (optique et SAR). Enfin, dans le cadre d’une étude préliminaire sur les méthodes de débruitage pour la détection d’eau nous avons étudié les propriétés statistiques de la moyenne géométrique temporelle et proposé une adaptation de la méthode variationnelle MuLoG pour la débruiter.
Fichier principal
Vignette du fichier
104620_GASNIER_2022_archivage.pdf (20.89 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03578831 , version 1 (17-02-2022)

Identifiants

  • HAL Id : tel-03578831 , version 1

Citer

Nicolas Gasnier. Use of multi-temporal and multi-sensor data for continental water body extraction in the context of the SWOT mission. Image Processing [eess.IV]. Institut Polytechnique de Paris, 2022. English. ⟨NNT : 2022IPPAT002⟩. ⟨tel-03578831⟩
346 Consultations
72 Téléchargements

Partager

Gmail Facebook X LinkedIn More