Locally stationary long memory estimation - IMT - Institut Mines-Télécom Access content directly
Journal Articles Stochastic Processes and their Applications Year : 2011

Locally stationary long memory estimation


There exists a wide literature on modelling strongly dependent time series using a longmemory parameter d, including more recent work on semiparametric wavelet estimation. As a generalization of these latter approaches, in this work we allow the long-memory parameter d to be varying over time. We embed our approach into the framework of locally stationary processes. We show weak consistency and a central limit theorem for our log-regression wavelet estimator of the time-dependent d in a Gaussian context. Both simulations and a real data example complete our work on providing a fairly general approach.
Fichier principal
Vignette du fichier
draft.pdf (502.31 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00408224 , version 1 (29-07-2009)
hal-00408224 , version 2 (08-04-2010)



François Roueff, Rainer von Sachs. Locally stationary long memory estimation. Stochastic Processes and their Applications, 2011, 121 (4), pp.Pages 813-844. ⟨10.1016/j.spa.2010.12.004⟩. ⟨hal-00408224v2⟩
159 View
287 Download



Gmail Facebook Twitter LinkedIn More