
LOCALLY STATIONARY LONG MEMORY ESTIMATION
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Abstract. There exists a wide literature on parametrically or semi-parametrically modeling

strongly dependent time series using a long-memory parameter d, including more recent work

on wavelet estimation. As a generalization of these latter approaches, in this work we allow

the long-memory parameter d to be varying over time. We adopt a semi-parametric approach

in order to avoid fitting a time-varying parametric model, such as tvARFIMA, to the observed

data. We study the asymptotic behavior of a local log-regression wavelet estimator of the time-

dependent d. Both simulations and a real data example complete our work on providing a fairly

general approach.

1. Introduction

There is a long tradition of modelling the phenomenon of long-range dependence in observed
data that show a strong persistence of their correlations by long-memory processes. Such data
can typically be found in the applied sciences such as hydrology, geophysics, climatology and
telecommunication (e.g. teletraffic data) but recently also in economics and in finance, e.g. for
modelling (realized) volatility of exchange rate data or stocks. The literature on stationary
long-memory processes is huge (see e.g. the references in the recent survey paper [13]), and
we concentrate here on the discussion of long-range dependence resulting from a singularity
of the spectral density at zero frequency - corresponding to a slow, i.e. polynomial, decay of
the autocorrelation of the data. Although a lot of (earlier) work started from a parametric
approach, using e.g. the celebrated ARFIMA-like models, it occurs that since the seminal work
by P. Robinson (see [25, 26]), the semi-parametric approach is known to be more robust against
model misspecification: instead of using a parametric filter describing both the singularity of
the spectral density at zero frequency and the ARMA-dynamics of the short memory part, only
the singular behavior of the spectrum at zero is modelled by the long-memory parameter, d say,
whereas the short memory part remains completely non-parametric.

Driven by the empirical observation that the correlation structure of observed (weakly or
strongly dependent) data can change over time, there is a also a growing literature on modelling
departures from covariance-stationarity, mainly restricted to the short-range dependent case.
One prominent approach, that we adopt in this paper, too, is the model of local stationarity,
introduced by a series of papers by R. Dahlhaus ([4, 5, 6]): in a non-parametric set-up, the
spectral structure of the underlying stochastic process is allowed to be smoothly varying over
time. Of course, time-varying linear processes (of ARMA type) arise as a subclass of these locally
stationary processes. In order to come up with a rigorous asymptotic theory of consistency
and inference, the time-dependence of the spectral density f(u, λ) of such locally stationary
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processes is modelled to be in rescaled time u ∈ [0, 1], leading to a problem of non-parametric
curve estimation: increasing the sample size T of the observed time series does no more mean to
look into the future but to dispose of more and more observations to identify f(t/T, λ) locally
around the “reference” rescaled time point u ≈ t/T .

In the aforementioned spirit of semi-parametric modelling, and in contrast to the parametric
approach of [3], one of the very few existing approaches on time-varying long-memory modelling,
we consider in this paper a locally stationary long-range dependent process with a singularity
in the spectral density at zero frequency which is parameterized by a time-varying long-memory
parameter d = d(u), u ∈ [0, 1], i.e. defined in rescaled time. Our approach is a true generalization
of the stationary approach in that the latter corresponds to a time-constant d for our locally
stationary model. As in the case of [23], the long memory parameter is estimated by a log-
regression of a series of wavelet scalograms (estimated wavelet variances per scale by summing
the squared wavelet coefficients per scale over location) onto a range of scales (corresponding
to the low frequency range of the spectrum). Although wavelets do not improve the estimation
of d in the standard stationary context −1/2 < d < 1/2, their use is of interest in various
practical situations (presence of trends, under and over-differenced series leading to d ≥ 1/2 and
d ≤ −1/2 respectively), see details in [13]. However, in our work now the challenge is to localize
the estimation of the no more constant parameter d. Wavelets are favorable in this situation
since, in contrast to a Fourier analysis, they are well localized both over time and frequency,
i.e. scale. The localization is achieved by smoothing over time the series of squared wavelet
coefficients on each of the coarse scales which enter into the log-regression, giving raise to a local
scalogram. We propose both a more traditional method based on two-sided kernels and also a
recursive scheme of one-sided smoothing weights, adapted to the end point of the observation
period.

The model studied in this paper arises naturally in the now long history of time series mod-
elling in presence of persistent memory. A survey on this subject is provided in [30]. In Chapter 3
of this reference, it is recalled how long memory and non stationarity have been used as concur-
rent modelling approaches, in particular for financial data, see e.g. [19]. Long memory modeling
for financial data goes back to [12]. Originally investigated on absolute powers of stock returns,
long memory models are currently widely used for realized volatility data since they were proven
efficient for forecasting purposes in this context in [2]. It is interesting to note that only 3 years
after [12], the need for time varying long memory parameters was pointed out in [11], see Sec-
tion 5 and in particular Figure 6 where an estimated d is plotted evolving between the values
0.358 and 0.714 over a 60 years long period. In this reference two approaches are suggested for
coping with a time varying d, namely, a stochastically evolving d or a regime switching between,
say, two values of d. These two approaches have been developed, respectively, in [24] and [17]
(see also [16] where singularities in the spectral density at frequencies different from zero are
considered in a piecewise stationary context).

As outlined earlier the alternative approach developed by Dahlhaus for locally stationary
(short memory) processes is quite appealing as it allows a meaningful asymptotic study of the
estimators. It was recently used for volatility estimation using time varying (short memory)
non-linear processes, see [9, 15]. The first attempt to adapt Dahlhaus’s approach in the pres-
ence of long memory appears to be the unpublished preprint [18]. The authors use the log
linear relationship of the local variance of the maximum overlap discrete wavelet transform and
their scaling parameter, plus a localization with a rectangular window in coefficient domain,
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to estimate the time-varying long memory parameter. However, the asymptotic analysis of the
proposed estimator is not provided. Although it is not essential in their analysis, the considered
model is a tvARFIMA(q, d, r), see our examples below. An asymptotic analysis is provided in
[3] for a different estimator applied to the same model. Roughly speaking, the standard way to
estimate a time varying parameter d(u) at rescaled time u = t/T ∈ (0, 1) of a locally stationary
process is to use that, for a sample size T , Tb observations around time index t approximately
behave as a stationary sample as the bandwidth parameter b → 0. In [3, Theorems 1] the
proposed estimator of the time varying long memory parameter d is claimed to satisfy a central
limit theorem at rate (Tb)−1/2. On the other hand Theorem 2 in [3] says that the bias is of
order b2 if d is two times continuously differentiable. Such results are somewhat similar to that
for estimating the time varying parameter of a locally stationary short memory process, see [20],
or, in a more general fashion, Example 3.6 in [7]. Hence the presence of long memory in [3]
seems not to affect the estimation rates. It can be explained by the parametric approach for the
correlation structure of the observed locally stationary time series in that the filter in the linear
(although infinite) locally autoregressive representation of the process is completely determined
by a finite-dimensional parameter. It follows that only a finite number of local correlations are
needed to determine the local parameter d. In other words the estimation of d(u) can be ob-
tained from an analysis over a fixed set of frequencies taken away from zero. This would however
induce a high sensitivity to model misspecification. In contrast, as usual in semi-parametric vs
parametric estimation, we want our approach to be robust against model misspecification. To
impose this robustness in the semi-parametric model, the memory parameter d is disconnected
from the spectral content out of the origin so that short range correlations does not carry any
information about this parameter. This fully justifies the semi-parametric context even though
it is more involved as it necessitates a low frequency analysis (where the long memory behavior
occurs) which, at first sight, seems contradictory to the local stationarity framework. In fact,
this contradiction is inherent to any locally stationary model which rely on a compromise be-
tween stationarity, which appears at small scales, and analyzing bandwidth, which requires a
large scale to decrease the randomness in the data. As a consequence practical applications of
these models require very long data sets. Our results will prove that this apparent contradiction
can still be overcome for locally stationary long memory models, but with some price to pay on
the rate of estimation (although we are unable to prove that this price is optimal). It is not as
surprising as it may appear. To understand why, consider a piecewise stationary context where
a finite number of regime switching times occur over the observation sample. One clearly sees
that the long memory over each stationary segment can be estimated at the same rate as in
the stationary context. As we will see, the picture is more complicated in a locally stationary
context but it can still be handled. More precisely, we will show that looking at low frequencies
is allowed in a locally stationary model but with an additional cost on the rate of convergence
depending on how small the frequency used for the analysis is. We believe that such theoretical
results are crucial for the practical estimation of the time varying long memory parameter as
they demonstrate the viability of such an approach while indicating that it should be applied
with care.

Summarizing our results, the rest of the paper is organized as follows. In Section 2, we
give the technical details of our locally stationary long memory model of semi-parametric type
and give a series of examples of processes falling into this model. In Section 3 we define our
estimators based on wavelet analysis for which we briefly recall the wavelet set-up. We define
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the local scalogram which is at the heart of our wavelet based estimators. We also prepare our
technique of stationary approximation by defining what we call the approximating stationary
tangent process and its wavelet spectrum, the local wavelet spectrum, as well as the pseudo-
estimator tangent scalogram. We finish this section by discussing a series of smoothing weights,
one- and two-sided kernels, which fulfill our given assumptions. The asymptotic properties
of our proposed estimators are stated in the following Section 4. We derive a mean-square
approximation of the local scalogram through the tangent scalogram (Proposition 1), followed
by a control of the mean square error of the scalogram as an estimator of the local wavelet
spectrum (Theorem 1) and a CLT for the tangent scalogram (Theorem 2), which finally allows
us to derive a CLT for the local scalogram (Corollary 1). The results on the asymptotic behavior
of the estimator of d(u) are then obtained: Corollary 2 provides the rate of convergence and
Theorem 3 the asymptotic normality. We pursue the paper by Section 5 on numerical examples,
first simulating some ARFIMA process with a time-varying d and comparing the performance
of the two-sided (rectangular) kernel with the recursive weight scheme. Second, we apply the
kernel estimator to a series of realized log volatilities (see also [31]), namely of the exchange rate
of the YEN versus USD, from June 1986 to September 2004. We conclude in Section 6 before
an appendix section presents all technical details of our derivations including our proofs.

2. Model set-up and examples

Define the difference operator [∆X]k = Xk −Xk−1 and ∆p recursively. This will allow d(u)
to take values up to p+ 1/2 in the following model.

We adapt the approach of [4] to the case where the spectral density is allowed to have a
singularity at the zero frequency. Let us fix p = 0, 1, 2, . . . and A0

t,T (λ) be an array of L2([−π, π])
functions with real-valued Fourier coefficients. Let {Xt,T } be an array of real-valued random
variables such that

∆pXt,T =

∫ π

−π
A0

t,T (λ) e
iλt dZ(λ) , t = 1, . . . T, T ≥ 1 , (1)

where dZ(λ) is the spectral representation of a centered weak white noise with unit variance,

εt =

∫ π

−π
eiλt dZ(λ), t ∈ Z , (2)

hence Z(λ) is a Hermitian complex valued process with weakly stationary orthogonal increments
on [−π, π]. We further assume that there exist a function A(u, λ) in L2([0, 1]× [−π, π]) and two
constants c > 0 and D < 1/2 such that

∣∣A0
t,T (λ)−A(t/T, λ)

∣∣ ≤ c T−1 |λ|−D , 1 ≤ t ≤ T, −π ≤ λ ≤ π , (3)

and

|A(u;λ) −A(v, λ)| ≤ c |v − u| |λ|−D , 0 ≤ u, v ≤ 1, −π ≤ λ ≤ π . (4)

These correspond to the definition of locally stationary processes introduced in [4] but with the
term |λ|−D added in the upper bound to allow a singularity at the zero frequency. Relations (1),
(3) and (4) give rise to the following time-varying generalized spectral density of {Xt,T }

f(u, λ) = |1− e−iλ|−2p |A(u;λ)|2 . (5)
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The first multiplicative factor in the right-hand side of (5) corresponds to the operator ∆p in
the left-hand side of (1). We now focus on time-varying generalized spectral densities exhibiting
a memory parameter at zero frequency.

Definition 1. We say that the process {Xt,T , t = 1, . . . , T, T ≥ 1} has local memory parameter
d(u) ∈ (−∞, p+1/2) at time u ∈ [0, 1] if it satisfies (1), (3) and (4) and its generalized spectral
density f(u, λ) defined by (5) satisfies the following semi-parametric type condition:

f(u, λ) = |1− e−iλ|−2d(u) f∗(u, λ) , (6)

with f∗(u, 0) > 0 and

|f∗(u, λ)− f∗(u, 0)| ≤ C f∗(u, 0) |λ|β , λ ∈ [−π, π] , (7)

where C > 0 and β ∈ (0, 2].

The assumption on the model is summarized hereafter.

Assumption 1. The array {Xt,T } of real-valued random variables has local memory parameter
d(u) ∈ (−∞, p + 1/2) at time u ∈ [0, 1]. Moreover {εt} in (2) is a weak white noise such that
E[ε0] = 0, Var(ε0) = 1, E[ε4t ] is finite for all t ∈ Z and the fourth-order cumulants of its spectral
representation dZ(λ) satisfy

Cum(dZ(λk), 1 ≤ k ≤ 4) = κ̂4(λ) dµ(λ), λ = (λk)1≤k≤4 ∈ [−π, π]4 , (8)

where κ̂4(λ) = κ̂4(λ1, λ2, λ3) is a bounded function defined on [−π, π]3, and µ is defined as the
measure on [−π, π]4 such that, for any (2π)-periodic functions Ak, 1 ≤ k ≤ 4,

∫

[−π,π]4

4∏

k=1

Ak(λk) dµ(λ) =

∫

[−π,π]3
A4(−λ1 − λ2 − λ3)

3∏

k=1

Ak(λk) dλ . (9)

Assumption (8) is standard for linear representations of time series and was used by Dahlhaus
(for cumulants of all orders) in the original definition of locally stationary processes in [5]. The
measure µ defined by (9) is sometimes denoted as dµ(λ) = η(λ1+ · · ·+λ4)dλ1 . . . dλ4, where η is
the (2π)-periodic Dirac comb, see e.g. [5, 8]. An immediate consequence of (8) is the following
bound of fourth-order cumulants, for any set of (2π)-periodic functions Ak, 1 ≤ k ≤ 4,

∣∣∣∣Cum
(∫ π

−π
Ak(λ)dZ(λ), 1 ≤ k ≤ 4

)∣∣∣∣ ≤ c4 ‖A1‖2 ‖A4‖2 ‖A2‖1‖A3‖1 , (10)

where c4 is a positive constant and ‖Ak‖p = (
∫ π
−π |Ak(λ)|pdλ)1/p.

We now give a small series of examples, adapted from [23] to the time varying setting.

Example 1 (tvFBM(H)). The Fractional Brownian motion (FBM) process {BH(k)}k∈Z with
Hurst index H ∈ (0, 1) is a discrete-time version of {BH(t), t ∈ R}, a Gaussian process with
mean zero and covariance

E[BH(t)BH(s)] =
1

2

{
|t|2H + |s|2H − |t− s|2H

}
.
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The spectral density of {∆BH(k)}k∈Z is then given by λ 7→ |1− e−iλ|−2H+1fFBM(λ;H), where

fFBM(λ;H) =

∣∣∣∣
2 sin(λ/2)

λ

∣∣∣∣
2H+1

+ |2 sin(λ/2)|2H+1
∑

k 6=0

|λ+ 2kπ|−2H−1 . (11)

The time varying Fractional Brownian motion (tvFBM) has generalized spectral density (6)
with p = 1, d(u) = H(u) + 1/2 ∈ (1/2, 3/2) and f∗(u, λ) = fFBM(λ;H(u)), where H is a
Lipschitz mapping of [0, 1] into a subset of (0, 1). Then (7) holds with β = (2H(u)+1)∧ 2. The
corresponding non-negative local transfer function is

A(u, λ) = |1− e−iλ|1/2−H(u)
√
fFBM(λ;H(u)) . (12)

In this case, by Lemma 3 in B, (4) holds for any D > supuH(u)− 1/2.

Example 2 (tvFGN(H)). The time varying fractional Gaussian noise (tvFGN) is defined sim-
ilarly as the tvFBM by f∗(u, λ) = fFBM(λ;H(u)) but with p = 0 and d(u) = H(u) − 1/2 ∈
(−1/2, 1/2).

Example 3 (approximated causal tvFBM(H)). The drawback of the tvFBM (and also of tvFGN)
defined above is the non-causality of the transfer function A(u, ·) defined in (12). Since {∆BH(k)}k∈Z
is purely non-deterministic, it admits a causal representation. On the other hand, to our knowl-
edge, the corresponding transfer function is not explicitly given and thus (4) is difficult to check.
To circumvent this problem, one may construct an example by approximating a causal continu-
ous time representation of the FBM, see e.g. [30, Chapter 6]. Let us fix H in (1/2, 1). Replacing
the integral by a discrete sum in this representation, one obtains the following process

B̃H(t) =
∑

s∈Z

{(t− s)
H−1/2
+ − (−s)H−1/2

+ } εs, t ∈ Z ,

where {εs}s∈Z is a standard Gaussian white noise. Then

∆B̃H(t) =
∑

k≥0

{kH−1/2 − (k − 1)
H−1/2
+ } εt−k, t ∈ Z ,

is a causal representation of a stationary process. Using an integral approximation of the discrete

Fourier transform of the sequence (k
H−1/2
+ − (k− 1)

H−1/2
+ )k∈Z, one can show that, as λ→ 0, the

corresponding transfer function AH(λ) satisfies |AH(λ)| = CH |λ|1/2−H +O(1) for some positive
constant CH . Moreover, for any ǫ > 0, there is a constant C such that, for all 1/2 < H ′ ≤ H < 1
and λ ∈ (−π, π),

|AH(λ)−AH′(λ)| ≤ C |H −H ′| |λ|H−1/2−ǫ .

Let now H be a Lipschitz mapping of [0, 1] into a subset of (1/2, 1) and define the approximated
causal tvFBM(H) process by setting A(u, λ) = AH(u)(λ). Then Condition (4) holds again for
any D > supuH(u)− 1/2.

Example 4 (tvARFIMA(q, d, r)). The time varying autoregressive fractionally integrated moving
average (tvARFIMA(q, d, r)) process is defined by

A(u;λ) = (1 − e−iλ)−d(u)+p σ(u)√
2π

1 +
∑r

k=1 θk(u)e
−iλ

1−∑q
k=1 φk(u)e

−iλ
, (13)
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where d : [0, 1] → (−∞, p + 1/2), σ : [0, 1] → R+, φ = [φ1 . . . φq]
T : [0, 1] → R

q and θ =

[θ1 . . . θr]
T : [0, 1] → R

r are Lipschitz functions such that 1−∑q
k=1 φk(u)z

k does not vanish for
all u ∈ [0, 1] and z ∈ C such that |z| ≤ 1. Using this latter condition, the local transfer function
A(u; ·) defines a causal autoregressive fractionally integrated moving average (ARFIMA(q, d(u)−
p, r)) process and the local generalized spectral density (5) satisfies the conditions (6) and (7)
with β = 2. Using Lemma 3 in B, the Lipschtiz assumptions on d, σ, θ and φ yield the
condition (4) with D > supu d(u)− p.

In order to verify Condition (3) trivially, the simplest definition of {∆pXt,T } in all the previous
examples is to take A0

t,T (λ) = A(t/T, λ), that is to set the time-varying linear representation

∆pXt,T =

∫ π

−π
A(t/T ;λ) eiλt dZ(λ) , (14)

as will be done for our simulated tvARFIMA in Section 5. However, one might also want to use
a different transfer function A0

t,T in (1), provided that Condition (3) holds. Such approximated

time varying linear representation is motivated by the tvAR(p) process, which satisfies the
recursion

Xt,T −
p∑

k=1

φk(t/T )Xt−k,T = σ(t/T ) εt, 1 ≤ t ≤ T ,

along with appropriate initial conditions. It has been shown in [4] that such non-stationary
process does not satisfy a representation of the form (14) (with p = 0) but it does satisfy (1)
and (3) (with p = D = 0).

3. Estimation method based on wavelet analysis

3.1. Discrete wavelet transform (DWT). Following the approach presented in [23] for the
estimation of the memory parameter of a stationary sequence, we compute the discrete wavelet
transform (DWT) of {Xt,T , 1 ≤ t ≤ T} (in discrete time) for a given scale function φ and wavelet
ψ. We denote by {Wj,k;T ; j ≥ 0, k ∈ Z} the wavelet coefficients of the process {Xt,T , 1 ≤ t ≤ T},

Wj,k;T =

T∑

t=1

hj,2jk−tXt,T , k = 0, . . . , Tj − 1 , (15)

where {hj,t, , t ∈ Z} denotes the wavelet detail filter at scale j associated to φ and ψ through
the relation

hj,t = 2−j/2

∫ ∞

−∞
φ(u+ t)ψ(2−ju) du ,

and Tj the number of available wavelet coefficients at scale j, which satisfies

T2−j − c ≤ Tj ≤ T2−j, for some constant c independent of j ≥ 0 . (16)

The filter hj,· and Tj are defined so that the support {t : hj,2jk−t 6= 0} is included in {1, . . . T}
for k = 0, . . . , Tj − 1. Observe that here j denotes the scale index of the wavelet coefficient and
k its position index. We use the convention that a large j corresponds to a coarse scale. Let us
define

Hj(λ) =
∑

t∈Z

hj,te
−itλ (17)
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the corresponding filter transfer function. The following conditions on the wavelet ψ and scale
function φ are assumed to hold for a positive integer M and a real α.

(W-1) φ and ψ are compactly-supported, integrable,
∫∞
−∞ φ(t) dt = 1 and

∫∞
−∞ ψ2(t) dt = 1.

(W-2) There exists α > 1 such that supξ∈R |ψ̂(ξ)| (1+|ξ|)α <∞, where ψ̂(ξ) =
∫∞
−∞ ψ(t) e−iξtdt

denotes the Fourier transform of ψ.
(W-3) The function ψ has M vanishing moments,

∫∞
−∞ tmψ(t) dt = 0 for all m = 0, . . . ,M − 1

(W-4) The function
∑

k∈Z k
mφ(· − k) is a polynomial of degree m for all m = 0, . . . ,M − 1.

Under (W-3) and (W-4), the filter can be interpreted as the convolution of the ∆M filter with
a finite impulse response filter. Hence if M ≥ p, Equation (15) may be written as

Wj,k;T =

T∑

t=1

h̃j,2jk−t(∆
pX)t,T , k = 0, . . . , Tj − 1 ,

where hj,· = h̃j,· ∗∆p. In particular, we have

H̃j(λ) =
∑

t∈Z

h̃j,te
−itλ = Hj(λ)(1 − eiλ)−p . (18)

3.2. Local wavelet spectrum, local scalogram, tangent scalogram, and final estima-
tor. Recall that f(u, ·) in (5) can be interpreted as a local generalized spectral density at rescaled
time u ∈ [0, 1]. Hence, as in the stationary setting used in [23], for each such u, we may define a
local wavelet spectrum σ2(u) = {σ2j (u), j ≥ 0}, where for each j ≥ 0, σ2j (u) is the variance of the

wavelet coefficients at scale index j of a process with generalized spectral density f(u, ·). This
variance is well defined under the assumptionM ≥ p because in this case the wavelet coefficients
at given scale are weakly stationary. Moreover, by (5) and (18),

σ2j (u) =

∫ π

−π
|Hj(λ)|2 f(u;λ) dλ =

∫ π

−π

∣∣∣H̃j(λ) A(u;λ)
∣∣∣
2
dλ .

The following intuitive definition will be also useful when developing our estimation theory using
stationary approximations. For any u ∈ [0, 1] one may define a tangent stationary process for
the p-th increment

∆pXt(u) =

∫ π

−π
A(u;λ) eiλt dZ(λ) , (19)

whose spectral density is |1 − e−iλ|2pf(u, λ). Further we define the wavelet coefficients of the
tangent weakly stationary process at any u ∈ [0, 1], namely,

Wj,k(u) =

T∑

t=1

h̃j,2jk−t(∆
pX)t(u) (20)

=

∫ π

−π
H̃j(λ) A(u;λ) e

iλ2jk dZ(λ) , k = 0, . . . , Tj − 1 . (21)

these wavelet coefficients are indeed those of a process with generalized spectral density f(u, ·).
Thus the above definition gives

σ2j (u) = E
[
W 2

j,k(u)
]
. (22)
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An important tool for the estimation of the long memory is the scalogram (first introduced
in this context by [32] and developed by [1]) defined as

σ̂2j = T−1
j

Tj−1∑

k=0

W 2
j,k .

Here to cope with local stationarity, we will need a local scalogram for estimating the local
wavelet spectrum, namely, for a given u ∈ [0, 1],

σ̂2j,T (u) =

Tj−1∑

k=0

γj,T (k)W
2
j,k;T , (23)

where {γj,T (k)} are some non-negative weights localized at indices k ≈ uTj and normalized in
such a way that

Tj−1∑

k=0

γj,T (k) = 1 . (24)

The localization property will be expressed by imposing a bound on the increase rate of the
following quantity (see equation (33))

Γq(u; j, T ) =

Tj−1∑

k=0

|γj,T (k)| |k − Tu2−j|q , (25)

as T → ∞ for appropriate values of the exponent q.
An important tool for studying the local scalogram is the tangent scalogram defined as

σ̃2j,T (u) =

Tj−1∑

k=0

γj,T (k)W
2
j,k(u) . (26)

We note that this definition is similar to that of the local scalogram in (23) but with the
wavelet coefficients Wj,k;T replaced by the tangent wavelet coefficients W 2

j,k(u) defined in (20).
The tangent scalogram is not an estimator since it cannot be computed from the observations
X1,T , . . . ,XT,T . However, it provides useful approximations of the local scalogram.

We conclude this section by deriving an estimator of the time-varying long memory parameter.
The local wavelet spectrum is related to the local memory parameter d(u) by the asymptotic
property σ2j (u) ∼ c22d(u)j as j → ∞. This property will be made more precise when we study

the bias, see the relation (40) below. An estimator of d(u) is obtained by a linear regression
of (log σ̂2j,T (u))j=L,...,L+ℓ with respect to j = L, . . . , L+ ℓ, where ℓ is the number of scales used
in the regression and L is the lowest scale index used in the regression. Let w be a vector
w = [w0, . . . , wℓ]

T satisfying

ℓ∑

i=0

wi = 0 and 2 log(2)
ℓ∑

i=0

iwi = 1 . (27)
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The local estimator of d(u) is defined as

d̂T (L) =

L+ℓ∑

j=L

wj−L log
(
σ̂2j,T (u)

)
. (28)

3.3. Conditions on the weights γj,T (k) and examples. Let us now precise our conditions
on the weights γj,T (k). Denote, for any 0 ≤ i ≤ j, v ∈ {0, . . . , 2i − 1} and λ ∈ R,

Φj,T (λ; i, v) =
∑

l∈Tj(i,v)

γj−i,T (2
il + v)eilλ , (29)

where

Tj(i, v) =
{
l : 0 ≤ l < 2−i(Tj−i − v)

}
. (30)

We moreover define

δj,T = sup
k=0,...,Tj−1

|γj,T (k)| . (31)

The weights γj,T (k) must satisfy an appropriate asymptotic behavior as T → ∞ for obtaining
a consistent estimator of d(u). More precisely, the following assumption will be required.

Assumption 2. The index j depends on T so that the weights (γj,T (k))k satisfy the following
asymptotic properties as T → ∞.

(i) We have δj,T → 0, and for any fixed integer i, δj+i,T ∼ 2iδj,T .

(ii) For all i, i′ ≥ 0, v ∈ {0, . . . , 2i − 1} and v′ ∈ {0, . . . , 2i′ − 1}, there exists a constant
V = V (i, v; i′, v′) such that

δ−1
j,T

∫ π

−π
Φj,T (λ; i, v)Φj,T (λ; i′, v′) dλ→ V (i, v; i′, v′) . (32)

(iii) For all η > 0, i ≥ 0 and v ∈ {0, . . . , 2i − 1}, we have

δ
−1/2
j,T sup

η≤|λ|≤π
|Φj,T (λ; i, v)| → 0 .

(iv) For q = 0, 1, 2, we have

Γq(u; j, T ) = O
(
(δj,T )

−q
)
, (33)

where Γq(u; j, T ) is defined in (25).

We provide several examples of weights satisfying this assumption below. In these examples,
the weights γj,T (k), k = 0, . . . , Tj , are entirely determined by Tj and a bandwidth parameter bT
and

δ−1
j,T ≍ bTTj ∼ bTT2

−j . (34)

In kernel estimation, one may interpret the bandwidth parameter bT as the proportion of wavelet
coefficients used for the estimation of the local scalogram σ̂2j,T (u) at given scale j and position
u, among the Tj wavelet coefficients available at scale j from T observations X1,T , . . . ,XT,T .
Lemmas 4 and 5 show that, for these examples, Assumption 2 is satisfied as soon as Tj → ∞
and bTTj → 0, except in the non-compactly supported case (K-3) in Lemma 4 where we assume
in addition that Tj exp(−c′bTTj) = O(1) for any c′ > 0, which holds in the typical asymptotic

setting bT ≍ T−ζ
j with ζ ∈ (0, 1).
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Example 5 (Two-sided kernel weights). For u ∈ (0, 1), one has a number of observations before
rescaled time u and after rescaled time u both tending to infinity. Thus we may use a two-sided
kernel to localize the memory parameter estimator around u. For a given bandwidth b = bT ,
the corresponding weights are given by

γj,T (k) = ρ−1
j,T K((uTj − k)/(bTTj)) , (35)

where K is a non-negative symmetric function and ρj,T is a normalizing term so that (24) holds.
In the last display we see that bT is the bandwidth in a rescaled time sense while bTTj is the
corresponding bandwidth in the sense of location indices k = 0, 1, 2, . . . , Tj at scale j . Lemma 4
in the appendix shows that Assumption 2 holds for a wide variety of choices for K. In particular
Assumption 2 holds with δj,T ≍ (bTTj)

−1 and V (i, v, ; i′, v′) = 2π2−i−i′ under the following
assumption.

Assumption 3. The weights (γj,T (k)) are defined by (35) with K = 1[−1/2,1/2]. Moreover, as
T → ∞, bT → 0 and TjbT → ∞.

Example 6 (Recursive weights). By recursive weights, we here mean that, given T, L and w, the
possibility of computing σ̂2j,T (u) by successive simple linear processing involving a finite number
of operations after each new observations Xt;T as t grows from t = 1 to t = T .

Because the DWT is defined as a succession of finite filtering and decimation, it is indeed
possible to compute Wj,k;T online for all j ∈ {L, . . . , L+ ℓ} and k ∈ {0, . . . , Tj}. Then an online
implementation of the local recursive scalogram can be done by setting

σ̂2j,−1;T = 0 , j ∈ {L, . . . , L+ ℓ},

and, using the following recursive equation for all j ∈ {L, . . . , L+ ℓ} and t ∈ {0, . . . , Tj − 1},

σ̂2j,t;T = exp(−(bTTj)
−1) σ̂2j,t−1;T +W 2

j,t;T ,

where (bTTj)
−1 is the exponential forgetting exponent corresponding to the bandwidth parameter

bT . For any u ∈ (0, 1], we define a local recursive scalogram by

σ̂2j;T (u) = ρ−1
j,T σ̂

2
j,[uTj ]−1;T ,

where [a] denotes the integer part of a and

ρj,T =

[uTj ]−1∑

k=0

e−k/(bT Tj) =
1− e−[uTj ]/(bT Tj)

1− e−(bT Tj)−1
. (36)

Hence (23) and (24) hold with

γj,T (k) = ρ−1
j,T e

−([uTj ]−1−k)/(bT Tj)1[0,uTj−1)(k) . (37)

Observe that these weights are one-sided by construction, since only the observations before
rescaled time u are used for estimating d(u). This is the reason why we may take u ∈ (0, 1].
Lemma 5 shows that Assumption 2 holds for these weights, provided that bT → 0 and TjbT →
∞.
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4. Asymptotic properties

We study the asymptotic properties of d̂T (L) defined by (28) as L, T → ∞ in such a way that
Assumption 2 holds for each j = L,L+1, . . . , L+ℓ and for the chosen weights γj,T (k). We provide
further conditions on L, T, δL,T under which consistency holds and derive the corresponding rate

of convergence (Corollary 2). Under strengthened conditions, we further show that d̂T (L) is
asymptotically normal (Theorem 3). These results essentially follow from asymptotic results on
the tangent scalogram (Theorem 2, Relations (40) and (61)) and approximation results on the
local scalogram (Proposition 1) based on the tangent scalogram.

4.1. Asymptotic properties of the local scalogram. In order to derive asymptotic results
for σ̂2j,T (u), we first establish a bound on the error made when approximating σ̂2j,T (u) by σ̃

2
j,T (u).

Proposition 1. Let u ∈ [0, 1] and consider a model satisfying Assumption 1. Assume (W-1)–
(W-4) hold with M ≥ p ∨ (d(u) − 1/2) and α > 1/2 − d(u). Suppose moreover that Assump-
tion 2(iv) hold. Then, the following approximation holds.

E

[(
σ̂2j,T (u)− σ̃2j,T (u)

)2]
= O

(
2(6+4p)jT−4δ−4

j,T + 2(3+2p+2d(u))jT−2δ−2
j,T

)
. (38)

Next, we derive a bound of the mean square error for estimating f∗(u, 0)K(d(u)) 22jd(u) using
the estimator σ̂2j,T (u), where K is the function defined by

K(d) =

∫ ∞

−∞
|ξ|−2d |ψ̂(ξ)|2 dξ , 1/2− α < d < M + 1/2 . (39)

In fact as the estimator d̂T (L) is defined in (28) using σ̂2j,T (u) with j = L + i, i = 0, . . . , ℓ,

and as L, T → ∞, it will be convenient to normalize these quantities by 22Ld(u), so that
f∗(u, 0)K(d(u)) 22jd(u)/22Ld(u) = f∗(u, 0)K(d(u)) 22id(u) does not depend on L.

Theorem 1. Let u ∈ [0, 1] and consider a model satisfying Assumption 1. Assume (W-1)–(W-4)
hold with M ≥ p ∨ d(u) and α > (1 + β)/2 − d(u). Then we have, as j → ∞,

σ2j (u) = f∗(u, 0)K(d(u)) 22jd(u)
{
1 +O

(
2−βj

)}
. (40)

Suppose moreover that Assumption 2 holds and that

2(3+2{p−d(u)})LT−2δ−2
L,T → 0 . (41)

Then we have for j = L+ i with i = 0, . . . , ℓ,

E

[
(2−2Ld(u)σ̂2j,T (u)− f∗(u, 0)K(d(u)) 22id(u))2

]

= O
(
δL,T + 2(3+2{p−d(u)})LT−2δ−2

L,T + 2−2βL
)

(42)

Using the approximation result stated in Proposition 1, we may also wish to obtain a central
limit theorem (CLT) for the local scalogram. To this end, we must first derive a CLT for the
tangent scalogram. Define, for any integer ℓ ≥ 0 and d ∈ (1/2 − α,M ] the 2ℓ-dimensional cross
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spectral density D∞,ℓ(λ; d) = [D∞,ℓ,v(d)]v=0,...,2ℓ−1 of the DWT of the generalized fractional
Brownian motion (see [23]) by

D∞,ℓ(λ; d) =
∑

l∈Z

|λ+ 2lπ|−2d eℓ(λ+ 2lπ) ψ̂(λ+ 2lπ)ψ̂(2−ℓ(λ+ 2lπ)) ,

where for all ξ ∈ R,

eℓ(ξ) = 2−ℓ/2 [1, e−i2−ℓξ, . . . , e−i(2ℓ−1)2−ℓξ]T .

In other words D∞,ℓ(λ; d) is a vector with entries

D∞,ℓ,v(λ; d) = 2−ℓ/2
∑

l∈Z

|λ+ 2lπ|−2d e−i v 2−ℓ(λ+2lπ) ψ̂(λ+ 2lπ)ψ̂(2−ℓ(λ+ 2lπ)), 0 ≤ v < 2ℓ .

We can now state the CLT for the tangent scalogram.

Theorem 2. Let u ∈ [0, 1] and consider a model satisfying Assumption 1. Suppose that (W-1)–
(W-4) hold with M ≥ p ∨ d(u), α > 1/2 − d(u). Suppose moreover one of the two following
assertion holds.

(a) Assumption 3 holds and {εt} is an i.i.d. sequence.
(b) Assumptions 2 (i)–(iii) hold and {εt} is a Gaussian process.

Then, for any ℓ ≥ 0, the following weak convergence holds.
(
S̃L(u)− E

[
S̃L(u)

])
⇒ N (0, (f∗(u, 0))2Σ(u)) , (43)

where
S̃L(u) = 2−2Ld(u)δ

−1/2
L,T [σ̃2L,T (u) σ̃

2
L+1,T (u) . . . σ̃

2
L+ℓ,T (u)]

T , (44)

and Σ(u) is the (ℓ+ 1)× (ℓ+ 1) symmetric matrix defined by

Σi,i′(u) = 2 2{1+4d(u)}i
2i−i′−1∑

v=0

V (0, 0; i − i′, v)

∫ π

−π

∣∣D∞,i−i′,v(λ; d(u))
∣∣2 dλ , (45)

on the bottom-left triangle 0 ≤ i′ ≤ i ≤ ℓ with V (0, 0; i − i′, v) defined in (32).

Remark 1. A CLT for the sum of squares of the wavelet coefficients of a stationary long memory
process was established in [22] for Gaussian processes and extended in [28] for linear processes.
We separate two sets of assumptions in Theorem 2. The result in the linear case is directly
applicable under Assumption 3 in (a) since the weights are constant. To obtain a CLT for
general weights (Assumption 2 in (b)) we use the additional Gaussian assumption. To avoid the
Gaussian assumption for such general weights, one needs to revisit the results in [29] to obtain a
CLT for sums of weighted squares of decimated linear processes. Such an extension goes beyond
the scope of this article.

Applying Proposition 1 and Theorem 2, we immediately get the following result.

Corollary 1. Let both the assumptions of Proposition 1 and Theorem 2 hold. Let L be such
that

2(3+2{p−d(u)})LT−2δ−3
L,T → 0 . (46)

Then, for any ℓ ≥ 0, the following weak convergence holds.(
ŜL(u)− E

[
ŜL(u)

])
⇒ N (0, (f∗(u, 0))2Σ(u)) , (47)
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where

ŜL(u) = 2−2Ld(u)δ
−1/2
L,T [σ̂2L,T (u) σ̂

2
L+1,T (u) . . . σ̂

2
L+ℓ,T (u)]

T . (48)

and Σ(u) is the (ℓ+ 1)× (ℓ+ 1) symmetric matrix defined by (45).

4.2. Asymptotic properties of the estimator d̂T (L). The following result establishes the

consistency of the estimator d̂T (L) defined in (28) with w = [w0, . . . , wℓ]
T fulfilling (27) and

provides a rate of convergence.

Corollary 2. Under the same assumptions as Theorem 1, if moreover L→ ∞, then we have

d̂T (L) = d(u) +Op

(
δ
1/2
L,T + 2(3/2+{p−d(u)})LT−1δ−1

L,T + 2−βL
)
= d(u) + op(1) . (49)

Let us determine the optimal rate of convergence of d̂T (L) towards d(u). By balancing

the three terms in the right-hand side of (49), we find that for 2L ≍ T 2/(3+6β−2d(u)+2p) and

bT ≍ (TLδL,T )
−1 ≍ T (2d(u)−2p−2β−1)/(3+6β−2d(u)+2p) , these three terms are asymptotically of

the same order. Hence for this choice of the lowest scale L and the bandwidth bT (recall that
δ−1
L,T ≍ bTT2

−L → ∞), we get

d̂T (L) = d(u) +Op

(
T−2β/(3+6β+2{p−d(u)})

)
.

We observe that the rate of convergence depends on the unknown parameter d(u). The de-
pendence in d(u) comes from the approximation result (38), which appears in (49) in the term

2(3/2+{p−d(u)})LT−1δ−1
L,T . Other error terms in (49) have rates not depending on d(u), which is

consistent with the facts that 1) the rate of convergence does not depend on d in the stationary
case [23, Theorem 2], and 2) these two terms come from the tangent weakly stationary approxi-

mation. On the other hand, the term 2(3/2+{p−d(u)})LT−1δ−1
L,T may seem unusual for estimating

the time-varying parameter for local-stationary processes. For instance, for a time-varying AR
(tvAR) process with a Lipschitz-continuous parameter corresponding to (3) with D = 0, the
approximation error due to non-stationarity yields the error term bT ≍ (TδL,T )

−1. Indeed this

corresponds to the term (nµ)−β with β = 1 in [20, Theorem 2] which is shown to yield a rate
optimal convergence in Theorem 4 of the same reference. Our error term is always larger as it in-
cludes the additional multiplicative term 2(3/2+{p−d(u)})L which tends to∞ since p−d(u) > −1/2
and L→ ∞. Although we cannot assert that our rate is optimal, it can be explained as follows.
In contrast to the tvAR process, our setting is locally semi-parametric, which implies to let L
tend to ∞ in order to capture the low frequency behavior driven by the memory parameter d.
It is thus reassuring that if L were allowed to remain fix our error bound would be of the same
order as for the locally parametric setting. The fact that letting L → ∞ decreases the rate of
convergence is not surprising as the low frequency behavior implies large lags in the process,
which naturally worsens the quality of the local stationary approximations. To conclude this
discussion, it is interesting to note that the wavelet estimation of the memory parameter of a
non-linear process may also yield a rate of convergence depending on the unknown parameter.
It is indeed the case for the infinite-source Poisson process, see [14, Remark 4.2].

We now state the asymptotic normality of the estimator, which mainly follows by applying
Proposition 1, Theorem 2, the bound (40) and the δ–method as in [21].
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Theorem 3. Let the assumptions of Corollary 1 hold with α > (1+ β)/2− d(u). Let L be such
that

2(3+2{p−d(u)})LT−2δ−3
L,T → 0 and 2−2βLδ−1

L,T → 0 . (50)

Then, the following weak convergence holds:

δ
−1/2
L,T (d̂T (L)− d(u)) ⇒ N (0,V(u)) , (51)

where d̂T (L) is defined by (28) and

V(u) = 1

K2(d(u))

ℓ∑

i,i′=0

Σi,i′(u)2
−2(i+i′)d(u)wiwi′ .

with Σ(u) and K(d(u)) defined by (45) and (39), respectively.

5. Numerical examples

We used a Daubechies wavelet with M = 2 vanishing moments and Fourier decay α = 1.34
(see [13]). Hence our asymptotic results hold for −0.84 < (1 + β)/2 − α < d(u) ≤ M = 2 (the
left bound −0.84 corresponds to choose β arbitrarily small). In particular d(u) will be allowed
to take values beyond the unit root case (d(u) ≥ 1).

5.1. Simulated data. We simulate a T = 212-long sampleX1,T , . . . ,XT,T of a tvARFIMA(1,d,0)
process which has a local spectral density given by (13) with σ ≡ 1, φ1 ≡ 0.8 and

d(u) = (1− cos(πu/2))/3, u ∈ [0, 1] .

The obtained simulated data is represented in Figure 1. We compute the local estimator σ̂2j,T (u)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−4

−2

0

2

4

6
Simulated ARFIMA process

Figure 1. A simulated tvARFIMA(1,d,0) of length T = 212.
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defined in (23) with {γj,T (k)} given by the kernel weights on the one hand and the recursive
weights on the other hand, for j = 1, 2, . . . , 5 with a bandwidth bT = 0.25. For the kernel weight
we took the rectangle kernel K = 1[−1/2,1/2]. The obtained local scalograms σ̂2j,T (u) of the local

wavelet spectrum σ2j (u), j = 1, 2, . . . , 5, u ∈ [0, 1] are represented in the lower parts of Figures 2
and 3, respectively, with a y-axis in a logarithmic scale. The five corresponding curves exhibit

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Kernel Estimator of d using scales 1  2  3 to 3  4  5 resp.

 

 

scales j=1 to j=3
scales j=2 to j=4
scales j=3 to j=5
true value

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
0

Kernel Estimator of the wavelet spectrum for 5 scales.

Figure 2. Local estimates as functions of u ∈ [0, 1] for the simulated

tvARFIMA(1,d,0) using a two-sided rectangular kernel. Top: d̂T (L;u) using
scales j = 1, 2, 3 to 3, 4, 5 (respectively in blue, green and red) and the true value
d(u) (in thin black). Bottom: σ̂2j,T (u) for j = 1, . . . , 5.

different variabilities, the larger j, the larger the variability, which is in accordance with our
theoretical findings. On the top of these two figures, we represented the true parameter d(u),

u ∈ [0, 1] (plain black) and the corresponding estimators d̂T (u) for three sets of scales, namely
j = 1, 2, 3 (blue line), j = 2, 3, 4 (green line) and j = 3, 4, 5 (red line), which correspond to
L = 1, 2, 3, respectively, and ℓ = 2 in the three sets of scales. The displayed bars centered at each

estimate d̂T (u) represent 0.95 level confidence intervals, based on the asymptotic distribution

given by (51). Since the asymptotic variance depends continuously on d(u), we plug d̂T (u) in
to compute each interval length. Numerical computations are done using the toolbox described
in [13]. One can observe the difference between the two-side kernel estimator and the recursive
estimator. The former exhibits a uniform behavior along time with border effects close to
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Recursive Estimator of the wavelet spectrum for 5 scales

Figure 3. Same as Figure 2 using a recursive estimator.

each boundaries of the interval [0, 1] (here we dropped the values of d̂T (u) for u < bT/2 and
u > 1 − bT /2 to avoid these border effects). In contrast the latter exhibits a diminishing then
stabilizing variability along time. Thus it is better adapted for estimating the right part of the
interval. It is interesting to note that the choice of L is crucial for this simulated example.
This is due to the presence of an autoregressive component leading to a strong positive short-
memory autocorrelation with a root close to the unit circle. As a result d(u) is over estimated
if a too low frequency band of scales is used (as in the case L = 1), which explains why the
true value mostly lies out of the corresponding confidence intervals. On the other hand this
bias diminishes drastically as soon as L ≥ 2, but, for L = 3, the confidence intervals are
larger since the normalizing term δL,T is larger. This larger variance is matched by the fact
that the estimates are varying more widely for L = 3. We made similar experiments for a
tvARFIMA(0,d,0) process. In this case, this bias is no longer observed for L = 1. We have also
tried different values of the bandwidth bT which also influences the bias and the variability of
the estimates in the expected way. Finally we tested our procedures on longer series to check the
numerical tractability. The computation of σ̂2j,T (u) from X1,T , . . . ,XT,T , with T = 215 took less
than 1 second for the kernel estimator and 7 seconds for the recursive estimator with a 3.00GHz
CPU. We note that the recursive version is about ten times slower than the kernel estimator.
On the other hand the recursive estimator is adapted to online computation, that is, σ̂2j,T (t) can
be computed in a recursive fashion for each new available observation Xt,T .
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5.2. Real data sets. We now use real data sets made of a sample of realized log volatility
of the YEN versus USD exchange rate between June 1986 and September 2004. The realized
log volatility is represented in Figure 4. The series length is T = 4470, that is of the same
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3

4
Realized Log volatility YEN/USD exchange rate from June 1986 to Sept. 2004

Figure 4. Realized log volatility of the YEN vs USD exchange rate from June
1986 to September 2004.

order as the previously simulated series (T = 212 = 4096). Viewing the simulated data as a
benchmark, we used approximately the same bandwidth parameter bT = 0.23 and the same sets
of scales, namely L = 1, 2, 3 with ℓ = 3 in the three cases. The two-sided kernel estimators of
the memory parameter are represented in the upper part of Figure 5. As previously we also
display the corresponding local scalograms in the lower part of the same figure. We omit the
results for the recursive estimator for brevity. One can observe that here as L increases the
estimates of d(u) globally increases which may indicate a negative bias at high frequencies. We
only plot the confidence intervals for the first 10 estimates for clarity. Indeed, in contrast to
the simulated case, they largely cover each other, which indicates a less important bias. The
green curve appears as a good compromise as in the simulated example. It exhibits a 5 years
periodic-like behavior, which seems to indicate that the long memory parameter is not constant
over time. This seems to be in accordance with the findings of [31] who model long-memory
realized volatilities by a change of the model parameters from one regime to another where the
different regimes can be explained by the influence of changing market factors (such as the Asian
financial crisis of 1998).

6. Conclusion

In this paper we have delivered a semi-parametric, hence fairly general, approach for estimat-
ing the time-varying long-memory parameter d(u) of a locally stationary process (or stationary
increment process). Apart from modelling the singularity at zero frequency by the curve d(u),
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Figure 5. Same as Figure 2 for the YEN vs USD exchange rate realized log volatility.

we do not need to model the time varying spectrum of the remaining part explicitly. Using a
wavelet log-regression estimator, already shown to be well-performing in the stationary situa-
tion, continues to work well due to a localization of the wavelet scalograms across time within
each scale.

The development of our approach is based on a weakly stationary approximation at each given
time point u. As in the stationary case, due to the generality of our semi-parametric spectral
density not to be depending on only a finite number of parameters (as in [3], e.g.), we need to
concentrate our attention to well estimating around frequency zero (where the amount of the
long-memory effect measured by d is visible). So a slightly subtle choice of considered scales
for the log-regression has to be done: asymptotically we need that our estimator involves more
and more frequencies (i.e. scales) but with a maximal frequency tending to zero. In the wavelet
domain, this means that the lowest scale used in the estimator will be chosen so that i) the
number of wavelet coefficients used in the estimator tends to infinity and ii) this lowest scale
itself tends (slowly) to infinity.

Simulations have shown that our estimator performs reasonably well beyond being attractive
from the point of view of asymptotic theory. In our real data analysis example, we adopt the
approach of [31] and of [10] to assume that realized volatilities of some exchange rates follow
a long-memory model. We make the interesting observation that for the observed series the
long-memory parameter can clearly not be considered to be constant over time - which suggests



20 FRANÇOIS ROUEFF AND RAINER VON SACHS

that in explaining the persistent correlation in this exchange data there are certainly periods of
stronger persistence followed by periods of weaker persistence.
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Appendix A. Postponed proofs

of Proposition 1. By [23, Proposition 3], there is a constant C1 such that, for all j ≥ 0 and all
λ ∈ [−π, π],

|Hj(λ)| ≤ C3 2
j/2 |2jλ|M (1 + 2j |λ|)−α−M . (52)

Applying (1), (19), (15) and (20), we get, for any u ∈ R, j ≥ 0 and k ∈ {0, . . . , Tj − 1},
Wj,k;T =Wj,k(u) +Rj,k(u;T ) , (53)

where

Rj,k(u;T ) =

∫ π

−π

∑

s∈Z

h̃j,s

[
A0

2jk−s,T (λ)−A(u;λ)
]
eiλ(2

jk−s) dZ(λ) .

The main approximation result consists in bounding

Sj(u;T ) =

Tj−1∑

k=0

γj,T (k)R
2
j,k(u;T )

and

Dj(u;T ) =

Tj−1∑

k=0

γj,T (k)Wj,k(u)Rj,k(u;T ) .

In the following C denotes some multiplicative constant. Using (3), (4), and (65) in Lemma 1,
we have∣∣∣∣∣

∑

s∈Z

h̃j,s

[
A0

2jk−s,T (λ)−A(u;λ)
]
eiλ(2

jk−s)

∣∣∣∣∣ ≤ C 2jp |λ|−D
{
2j/2

∣∣2jk/T − u
∣∣+ 23j/2/T

}
.

Recall that D denotes an exponent less than 1/2 which appears in the Conditions (3) and (4).
Using D < 1/2, we get

E
[
R2

j,k(u;T )
]
≤ C 22jp 23j T−2

{
1 + (k − Tu2−j)2

}
.

Since we assumed α > 1/2− d(u), we can take D large enough so that 1− α− d(u) < D < 1/2
(by adapting the constant c appearing in the afore mentioned conditions). Hence we can assume
in the following that

M > d(u)− 1/2 and d(u) +D + α > 1 . (54)
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By (21) we also obtain that

|E [Wj,k(u)Rj,k(u;T )]| ≤ C 2jp
{
2j/2

∣∣2jk/T − u
∣∣+ 23j/2/T

} ∫ π

−π

∣∣∣H̃j(λ)A(u;λ)
∣∣∣ |λ|−D dλ

Using (18), (5), (6), f∗(u, λ) ≤ Cf∗(u, 0) (by (7)), and (52), we further have
∫ π

−π

∣∣∣H̃j(λ)A(u;λ)
∣∣∣ |λ|−D dλ ≤ C

∫ π

−π
|Hj(λ)|

√
f(u, λ) |λ|−D dλ

≤ C
√
f∗(u, 0) 2j(d(u)+D−1/2) ,

where we used that
∫
R
|ξ|M−d(u)−D (1 + |ξ|)−α−Md(ξ) < ∞ by (54). The last displays provide

simple bounds for the expectations of Sj and Dj .
To bound their variance, we use [27, Theorem 2, page 34], which yields

Cov
(
R2

j,k(u;T ), R
2
j,k′(u;T )

)
= 2Cov2

(
Rj,k(u;T ), Rj,k′(u;T )

)

+Cum
(
Rj,k(u;T ), Rj,k(u;T ), Rj,k′(u;T ), Rj,k′(u;T )

)

and

Cov
(
Wj,k(u)Rj,k(u;T ),Wj,k′(u)Rj,k′(u;T )

)

= Cov
(
Wj,k(u),Wj,k′(u)

)
Cov

(
Rj,k(u;T ), Rj,k′(u;T )

)

+Cov
(
Rj,k(u;T ),Wj,k′(u)

)
Cov

(
Wj,k(u), Rj,k′(u;T )

)

+Cum
(
Wj,k(u), Rj,k(u;T ),Wj,k′(u), Rj,k′(u;T )

)
.

Let us first provide bounds of E
[
Rj,k(u;T )Rj,k′(u;T )

]
and E

[
Wj,k(u)Rj,k′(u;T )

]
for k, k′ =

0, . . . , Tj − 1. Proceeding as previously, using (54), we get (in fact the cases above k = k′ are
particular cases)

∣∣E
[
Rj,k(u;T )Rj,k′(u;T )

]∣∣ ≤ C 22jp 23j T−2
{
1 + |k − Tu2−j |

}{
1 + |k′ − Tu2−j|

}
.

and
∣∣E
[
Wj,k(u)Rj,k′(u;T )

]∣∣ ≤ C 2jp
√
f∗(u; 0) 2j(d(u)+D−1/2)

{
2j/2

∣∣2jk′/T − u
∣∣+ 23j/2/T

}
.

Using (10), we further get
∣∣Cum

(
Rj,k(u;T ), Rj,k(u;T ), Rj,k′(u;T ), Rj,k′(u;T )

)∣∣

≤ C 24jp 26j T−4
{
1 + (k − Tu2−j)2

}{
1 + (k′ − Tu2−j)2

}
,

and, denoting by Bj(u) the variance of the (weakly stationary) process {Wj,k(u), k ∈ Z},
∣∣Cum

(
Wj,k(u), Rj,k(u;T ),Wj,k′(u), Rj,k′(u;T )

)∣∣

≤ C Bj(u) 2
2jp 23j T−2

{
1 + |k − Tu2−j|

} {
1 + |k′ − Tu2−j|

}

Gathering these bounds, we obtain the same bound for Var1/2 (Sj(u;T )) and E [Sj(u;T )] and
thus, using the definition of Γ in (25),

∣∣E
[
S2
j (u;T )

]∣∣1/2 ≤ C 22jp 23j T−2 {Γ0(u; j, T ) + Γ2(u; j, T )} . (55)
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For Dj(u;T ), we obtain

|E [Dj(u;T )]| ≤ C 2jp
√
f∗(u; 0) 2j(d(u)+D−1/2) 23j/2 T−1 {Γ0(u; j, T ) + Γ1(u; j, T )} .

We then obtain that Var1/2 (Dj(u;T )) is at most

C 2jp 23j/2 T−1 {Γ0(u; j, T ) + Γ1(u; j, T )}
{
B

1/2
j (u) +

√
f∗(u; 0) 2j(d(u)+D−1/2)

}
.

Observe that by [23, Theorem 1] we have, since M > d(u) − 1/2 and α > 1/2 − d(u), Bj(u) ≤
C f∗(u; 0) 22d(u)j . Hence, since D < 1/2,

∣∣E
[
D2

j (u;T )
]∣∣1/2 ≤ C 2jp

√
f∗(u; 0) 2j(3/2+d(u)) T−1 {Γ0(u; j, T ) + Γ1(u; j, T )} . (56)

By (23) and (53), we have

σ̂2j,T (u) = σ̃2j,T (u) + Sj(u;T ) +Dj(u;T ) , (57)

where σ̃2j,T (u) is defined in (26). The bound (38) now follows from (55), (56), (57) and Assump-

tion 2 (iv). �

of Theorem 1. By (22) and (24),

E
[
σ̃2j,T (u)

]
= E

[
W 2

j,k(u)
]
= σ2j (u) . (58)

Since the wavelet coefficients (20) are those of a weakly stationary process, their behavior at
large scales (j → ∞) can be studied using [23, Theorem 1]. By [23, Theorem 1], since we
assumed (7) and M > d(u)− 1/2 and α > (1+ β)/2− d(u), we obtain (40). In the following we
denote

K∗
u = f∗(u, 0)K(d(u)) .

We now provide a bound for

Var
(
σ̃2j,T (u)

)
=

Tj−1∑

k,k′=0

γj,T (k)γj,T (k
′)Cov

(
W 2

j,k(u),W
2
j,k′(u)

)
= V1 + V2 ,

where the decomposition in V1 + V2 follows from that of Cov
(
W 2

j,k(u),W
2
j,k′(u)

)
in

2Cov2
(
Wj,k(u),Wj,k′(u)

)
+Cum

(
Wj,k(u),Wj,k(u),Wj,k′(u),Wj,k′(u)

)
.

We easily obtain that

V1 = 2

∫ π

−π
|Φj,T (λ; 0, 0)|2 D⋆2

j (λ) dλ , (59)

where Dj denotes the spectral density of the weakly stationary process {Wj,k , k ∈ Z}, Φj,T

is defined in (29) and, for any (2π)-periodic function g, g⋆2 = g ⋆ g(λ) =
∫ π
−π g(λ − ξ)g(ξ)dξ.

Moreover, applying (8) with (21) and (29), we get that V2 can be expressed as

∫

[−π,π]4

4∏

k=1

[
H̃j(λk)A(u;λk)

]
Φj,T (2

j(λ1 + λ2); 0, 0)Φj,T (2
j(λ3 + λ4); 0, 0)κ̂4(λ) dµ(λ) .

Hence, bounding κ̂4, using (9) and setting λ = λ1 + λ2, we have

|V2| ≤ c4

∫ π

−π

∣∣ℵ⋆2
j (λ)

∣∣2 ∣∣Φj,T (2
jλ; 0, 0)

∣∣2 dλ , (60)
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where we set ℵj(λ) = H̃j(λ) A(u;λ). Observe that ‖ℵ⋆2
j ‖∞ ≤ ‖ℵj‖22 = ‖Dj‖1 and ‖D⋆2

j ‖∞ ≤
‖Dj‖22. Now by [23, Theorem 1] we have, since M ≥ d(u) and α > 1/2 − d(u), ‖Dj‖∞ =

O
(
22jd(u)

)
(the constants depend on f∗(u; ·) only), which implies bounds of the same order for

‖Dj‖1 and ‖Dj‖2. Using (59), (60), Assumption 2(ii) with i = i′ = v = v′ = 0 and observing
that, by (2π) periodicity of |Φj,T (λ; 0, 0)|,∫ π

−π

∣∣Φj,T (2
jλ; 0, 0)

∣∣2 dλ =

∫ π

−π
|Φj,T (λ; 0, 0)|2 dλ ,

we finally get that

Var
(
σ̃2j,T (u)

)
= O(24jd(u)δj,T ) . (61)

Using (57) and (58), E
[
(σ̂2j,T (u)−K∗

u 22jd(u))2
]
is at most

C
{
Var

(
σ̃2j,T (u)

)
+ E

[
S2
j (u;T )

]
+ E

[
D2

j (u;T )
]}

+O
(
22(2d(u)−β)j

)

= O
(
24jd(u)δj,T + 2(6+4p)jT−4δ−4

j,T + 2(3+2p+2d(u))jT−2δ−2
j,T + 22(2d(u)−β)j

)
.

where we used (61), (55), (56) and (33). Using (41), the last display gives (42). �

of Theorem 2. Under the set of Assumptions (a), the proof immediately follows from [28, The-
orem 2]. We now consider the set of Assumptions (b). In this case, we rely on the Gaussian
assumption. The proof follows the lines of [21, Theorem 2], in which the stationary case is
considered, i.e. γj,T (u) = 1. We first observe that, for any µ = [µ0 . . . µℓ]

T ∈ R
ℓ+1, we may

write
µT S̃L(u) = ξTL∆LξL ,

where ξL is a Gaussian vector with entries (WL+i,k(u))0≤i≤ℓ, 0≤k≤TL+i
and ∆L is the diagonal

matrix with diagonal entries
(
2−2Ld(u)δ

−1/2
L,T µiγL+i,T (u)

)
0≤i≤ℓ, 0≤k≤TL+i

. We may thus apply [22,

Lemma 12].
To obtain (43), it is thus sufficient to show that

ρ(∆L)ρ (Cov(ξL)) → 0 , (62)

where ρ(A) denotes the spectral radius of A, and

Cov(µT S̃L(u)) → (f∗(u, 0))2µTΣµ . (63)

We have, by (31) and Assumption 2(i),

ρ(∆L) ≤ 2−2Ld(u)δ
−1/2
L,T max

0≤i≤ℓ
|µi| max

0≤i≤ℓ
δL+i,T = o

(
2−2Ld(u)

)
.

Using [21, Lemma 6], [22, Lemma 11] and that DL+i is the spectral density of the process
{WL+i,k(u), k ∈ Z}, we have

ρ (Cov(ξL)) ≤
ℓ∑

i=0

ρ (Cov([WL+i,k(u), k = 0, . . . , TL+i])) ≤ 2π
ℓ∑

i=0

‖DL+i‖∞ .

By [23, Theorem 1], since we assumed M ≥ d(u) and α > 1/2 − d(u), we have ‖DL+i‖∞ =

O(22Ld(u)). This with the last two displays implies (62).
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We now compute the asymptotic covariance matrix of S̃L(u). Let 0 ≤ j′ ≤ j. Using (30) and
the Gaussian assumption, we have

Cov
(
σ̃2j,T (u), σ̃

2
j′,T (u)

)
=

Tj−1∑

k=0

Tj′−1∑

k′=0

γj,T (k)γj′,T (k
′)Cov

(
W 2

j,k(u),W
2
j′,k′(u)

)

= 2

2j−j′−1∑

v=0

Tj−1∑

k=0

∑

l∈Tj(j−j′,v)

γj,T (k)γj′,T (l2
j−j′ + v)Cov2

(
Wj,k(u),Wj′,l2j−j′+v(u)

)
.

Using [23, Corollary 1], we have

Cov
(
Wj,k(u),Wj′,l2j−j′+v(u)

)
=

∫ π

−π
Dj,j−j′,v(λ)e

iλ(k−l) dλ ,

where Dj,j−j′ = [Dj,j−j′,v]v=0,...,2j−j′−1 denotes the 2j−j′-dimensional cross-spectral density be-

tween Wj,k(u) and [Wj′,l2j−j′+v(u)]v=0,...,2j−j′−1. It follows from the last two displays and (29)

that

Cov
(
σ̃2j,T (u), σ̃

2
j′,T (u)

)
= 2

2j−j′−1∑

v=0

∫ π

−π
Φj,T (λ; 0, 0)Φj,T (λ; j − j′, v) D̃j,j−j′,v(λ) dλ ,

where

D̃j,j−j′,v(λ) =

∫ π

−π
Dj,j−j′,v(ξ)Dj,j−j′,v(ξ − λ)dξ .

By [23, Theorem 1(b)], since we assumed M ≥ d(u) and α > 1/2− d(u), using (7), we have, for
j = L+ i and j′ = L+ i′ with i′ ≤ i fixed,

‖2−2d(u)jDj,j−j′ − f∗(u, 0)D∞,i−i′(·; d(u))‖∞ → 0 .

The last three displays, (45), Lemma 2 and Assumption 2 yield

Cov
(
S̃L,T (u)

)
→ (f∗(u, 0))2Σ ,

and hence (63). �

of Theorem 3. We first show that

δ
−1/2
L,T


 2−2Ld(u)




σ̂2L,T (u)

σ̂2L+1,T (u)
...

σ̂2L+ℓ,T (u)


−K∗

u




1

22d(u)

...

22ℓd(u)





⇒ N

(
0, (f∗(u, 0))2Σ(u)

)
. (64)

Observe that the weak convergence (64) is the same as (47) except for the centering term. Re-
lation (47) is valid since the assumptions of Corollary 1 hold. Applying δL,T → 0, Proposition 1
and the left-hand side condition of (50), we have that, for any j = L+ i with a fixed i = 0, . . . , ℓ,

δ
−1/2
L,T 2−2Ld(u)

E
[
σ̂2j,T (u)

]
= δ

−1/2
L,T 2−2Ld(u)

E
[
σ̃2j,T (u)

]
+ o(1) .

The bias control (40) and the right-hand side condition of (50) then imply

δ
−1/2
L,T 2−2Ld(u)

E
[
σ̂2j,T (u)

]
= δ

−1/2
L,T f∗(u, 0)K(d(u))22id(u) + o(1) .
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This, with (47) gives the weak convergence (64) .
The convergence (51) now follows from (64) by applying the δ-method as in [21, Proposition 3].

Indeed, define

g(x) =

ℓ∑

i=0

wi log(xi) for all x = [x0 . . . xℓ]
T .

Observe that, by (27) and (28), we have

g
(
2−2Ld(u)[σ̂2L,T (u) σ̂

2
L+1,T (u) . . . σ̂

2
L+ℓ,T (u)]

T
)
= d̂T (L)

and

g
(
f∗(u, 0)K(d(u))[1 22d(u) . . . 22ℓd(u)]T

)
= d(u) .

Thus (51) follows from (64) by computing the gradient of g at the centering term,

∇g
(
f∗(u, 0)K(d(u))[1 22d(u) . . . 22ℓd(u)]T

)
=

[w0 w12
−2d(u) . . . wℓ2

−2ℓd(u)]T

f∗(u, 0)K(d(u))
.

�

Appendix B. Technical lemmas

Lemma 1. Assume (W-1)–(W-4). Let hj,· the wavelet detail filter at scale index j and h̃j,· any
factorization of it by ∆p with p ∈ {0, . . . ,M}. Then we have

∑

s∈Z

|h̃j,s| ≤ C 2j(p+1/2) and
∑

s∈Z

(1 + |s|) |h̃j,s| ≤ C 2j(p+3/2) . (65)

Lemma 2. Suppose Assumption 2 holds. Let i, i′ ≥ 0, v ∈ {0, . . . , 2i−1} and v′ ∈ {0, . . . , 2i′−1}.
Define, for any (2π)-periodic function g,

IT (g) = δ−1
j,T

∫ π

−π
Φj,T (λ; i, v)Φj,T (λ; i′, v′) g(λ) dλ .

Then the two following assertions hold.

(i) If h→ g in L∞([−π, π]), then sup
T≥0

|IT (h) − IT (g)| → 0.

(ii) If g ∈ L∞([−π, π]) is continuous at zero, then, as T → ∞, IT (g) → V (i, v; i′, v′) g(0).

Proof. By linearity of IT , we may take g = 0 to prove Assertion (i). We have, by the Cauchy-
Schwarz inequality

|IT (h)| ≤ ‖h‖∞
[
δ
−1/2
j,T ‖Φj,T (·; i, v)‖2

] [
δ
−1/2
j,T ‖Φj,T (·; i′, v′)‖2

]
.

Using Assumption 2(ii), the terms between brackets are bounded independently of j and we
obtain (i).

We now prove (ii). By linearity of IT , we may assume g(0) = 1. By Assumption 2(ii), we
have IT (1) → V (i, v; i′, v′). On the other hand, we have, for any η > 0

|IT (g) − IT (1)| =
∣∣IT ((g − 1)1[−η,η] + (g − 1)1[−η,η]c)

∣∣

≤
∣∣IT ((g − 1)1[−η,η])

∣∣+
∣∣IT ((g − 1)1[−η,η]c)

∣∣ .
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Observe that by continuity of g at the origin, ‖(g − 1)1[−η,η]‖∞ → 0 as η → ∞. By (i), we get∣∣IT ((g − 1)1[−η,η])
∣∣→ 0 as η → ∞. It thus only remains to show that

∣∣IT ((g − 1)1[−η,η]c)
∣∣ → 0

for any η > 0. This follows from the bound

∣∣IT ((g − 1)1[−η,η]c)
∣∣ ≤ ‖g − 1‖1

[
δ
−1/2
j,T sup

η≤|λ|≤π
|Φj,T (λ; i, v)|

][
δ
−1/2
j,T sup

η≤|λ|≤π

∣∣Φj,T (λ; i
′, v′)

∣∣
]
,

and by applying Assumption 2(iii). �

Lemma 3. For any a > 0 and b > 0, there exists c > 0 such that

|zα − 1| ≤ c {1 + log(|z|)}α for all α ∈ [0, a], z ∈ C with |z| ≤ b .

Lemma 4. Assume one of the following.

(K-1) K = 1[−1/2,1/2].

(K-2) K is compactly supported and |K̂(ξ)| = o(|ξ|−3/2) as |ξ| → ∞, where K̂ denotes the
Fourier transform of K.

(K-3) K is integrable, K̂ has an exponential decay, i.e. for some c > 0, |K̂(ξ)| = O (exp(−c|ξ|))
as |ξ| → ∞, K(t) = O(|t|−p0) as |t| → ∞ for some p0 > 3, the derivative K ′ of K
satisfies |K ′(t)| = O(|t|−p1) as |t| → ∞ for some p1 > 1 and Tj exp(−c′bTTj) = O(1) for
any c′ > 0.

Suppose that bT → 0 and that j depends on T so that TjbT → ∞ as T → ∞. Then, for weights
given by (35), Assumption 2 is satisfied with

δj,T ∼ ‖K‖∞
‖K‖1

(bTTj)
−1 (66)

V (i, v; i′, v′) = 2π
‖K‖22

‖K‖1‖K‖∞
2−i−i′ , i, i′ ≥ 0, 0 ≤ v < 2i, 0 ≤ v′ < 2i

′

. (67)

Proof. For convenience, we will omit the subscripts T and j,T in this proof section when no
ambiguity arises. Under (K-1), one has ρ = bTj+O(1). Under (K-2), K is uniformly continuous
on its compact support S and, since u ∈ (0, 1), b → 0 and Tjb → ∞, S eventually falls between
the extremal points of {(uTj − k)/(bTj), k = 0, . . . , Tj − 1}. Thus,

(bTj)
−1

Tj−1∑

k=0

K((uTj − k)/(bTj)) →
∫

S
K(s) ds = ‖K‖1 .

Under (K-3), using that |K ′(t)| ≤ c(1 + |t|)−p1 for some p1 > 1 and c > 0, we get

(bTj)
−1

Tj−1∑

k=0

K((uTj − k)/(bTj))−
∫ u/b

(u−1)/b
K(s) ds = O


(bTj)

−2

Tj∑

l=0

(1 + l/(bTj))
−p1




= O
(
(bTj)

−1
)
.

Hence the last three displays yield that, in all cases,

ρj,T ∼ ‖K‖1(bTTj) . (68)

The asymptotic equivalence (66) then follows from the definitions (35) and (31), and we obtain
Assumption 2(i) by (16).
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Let us now prove that Assumption 2(ii) holds under (K-1), (K-2) and (K-3), successively.
Note that, by definition of (29), we have

∫ π

−π
Φj,T (λ; i, v)Φj,T (λ; i′, v′) dλ = 2π

∑

l∈Tj(i,v)∩Tj(i′,v′)

γj−i,T (2
il + v)γj−i′,T (2

i′ l + v′) . (69)

Under (K-1), using 2−iTj−i ∼ 2−i′Tj−i′ ∼ Tj by (31), bTj → ∞ and b → 0, we easily get that

the supports of the sequences {γj−i,T (2
il+v), l ≥ 0} and {γj−i′,T (2

i′ l+v), l ≥ 0} are eventually
included in Tj(i, v) ∩ Tj(i′, v′) and their intersection is of length asymptotically equivalent to
bTj. Hence, using (69), (66) and (68) with ‖K‖1 = ‖K‖∞ = 1, we obtain that, in this case,

δ−1

∫ π

−π
Φj,T (λ; i, v)Φj,T (λ; i′, v′) dλ ∼ 2π

T 2
j

Tj−iTj−i′
.

By (16), this is Assumption 2(ii) with V (i, v; i′, v′) = 2π2−i−i′ which coincides with (67) under
(K-1).

Under (K-2), we proceed by interpreting the sum in (69) as a Riemann approximation of
∫
K2

up to a normalization factor. For l ∈ Tj(i, v) ∩ Tj(i′, v′), we approximate

Jl = (bTj)
−1ρj−i,Tρj−i′,Tγj−i,T (2

il + v)γj−i′,T (2
i′ l + v′)

= (bTj)
−1K({uTj−i − (2il + v)}/{bTj−i})K({uTj−i′ − (2i

′

l + v′)}/{bTj−i′}) ,
by the local average

J̃l =

∫

Il

K2(s) ds ,

where Il is defined as the interval [{uTj − (l + 1)}/{bTj}, {uTj − l}/{bTj}]. Observe that

sup
s∈Il

∣∣s− {uTj−i − (2il + v)}/{bTj−i}
∣∣ ≤ 1

bTj
+

∣∣∣∣
1

bTj
− 2i

bTj−i

∣∣∣∣ |l − uTj|+ u
|Tj−i − 2iTj |

bTj−i

|v|
bTj−i

.

Using (16), i, v = O(1) and l = O(Tj), we obtain, for any fixed integers i and v,

sup
0≤l≤2Tj

sup
s∈Il

∣∣s− {uTj−i − (2il + v)}/{bTj−i}
∣∣ = O((bTj)

−1) , (70)

and the same holds if i, v is replaced by i′, v′. Note that

Tj(i, v) ∩ Tj(i′, v′) = {0, 1 . . . , {2−i(Tj−i − v)} ∧ {2−i′(Tj−i′ − v)} − 1} ,
which, by (16) and the fact thatK is compactly supported, is eventually contained in {0, 1, . . . , 2Tj}
and eventually contains the set of l’s such that J̃l 6= 0, which is of size O(bTj). By (70), we also

see that, out of a set of length O(bTj), both Jl and J̃l vanish. Hence we have

∑

l∈Tj(i,v)∩Tj (i′,v′)

∣∣∣Jl − J̃l

∣∣∣ = O

(
bTj sup

l
|Jl − J̃l|

)
.

Using (70) and the uniform continuity of K, there exists a constant c such that

sup
l

|Jl − J̃l| ≤ (bTj)
−1 sup

|s−t|,|s−t′|≤c/(bTj)

∣∣K2(s)−K(t)K(t′)
∣∣ = o((bTj)

−1) .
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The last two displays, (69) and the definitions of Jl and J̃l thus yield

ρj−i,Tρj−i′,T

bTj

∫ π

−π
Φj,T (λ; i, v)Φj,T (λ; i′, v′) dλ ∼ 2π

∫
K2(s) ds = 2π‖K‖22 . (71)

By (66) and (68), this gives Assumption 2(ii) with V (i, v; i′, v′) given by (67).
Under (K-3), we proceed similarly but we can no longer use that K has a compact support.

Instead we use that K is bounded and |K ′(t)| ≤ c′(3 + |t|)−p1 for some p1 > 1 and c′ > 0 and
thus, for any c > 0, as soon as (c+ 1)/(bTj) ≤ 1,

sup
s∈Il

sup
|t−s|,|t′−s|≤c/(bTj)

∣∣K2(s)−K(t)K(t′)
∣∣ ≤ c′′ (bTj)

−1(2 + |uTj − l|/(bTj))−p .

With (70) and since the length of Tj(i, v) ∩ Tj(i′, v′) is O(Tj), we get

∑

l∈Tj(i,v)∩Tj (i′,v′)

∣∣∣Jl − J̃l

∣∣∣ = O


(bTj)

−2

Tj∑

k=0

(1 + k/(bTj))
−p


 = O

(
(bTj)

−1
)
.

Moreover
∑

l∈Tj(i,v)∩Tj (i′,v′)

J̃l =

∫ u/b

−u′/b
K2(s) ds→ ‖K‖22 ,

where u′ = [{2−i(Tj−i − v)} ∧ {2−i′(Tj−i′ − v′)}]/Tj − u→ 1− u by (16). This yields (71) as in
the previous case and thus the same conclusion holds.

Let us now show that Assumption 2 (iii) holds under (K-1), (K-2) and (K-3), successively.
Under (K-1), we have

|Φ(λ; i, v)| = ρ−1
j−i,T

∣∣∣∣∣

N∑

k=1

eikλ

∣∣∣∣∣ ,

where N = Nj,T denotes the number of l ∈ Tj(i, v) such that γj−i,T (2
il + v) > 0. Since the

Dirichlet kernel satisfies

|DN (λ)| =
∣∣∣∣∣

N∑

k=1

eikλ

∣∣∣∣∣ =
∣∣∣∣
sin(λN/2)

sin(λ/2)

∣∣∣∣ ,

we observe that, for any η > 0, supN≥1 supλ∈[η,2π−η] |DN (λ)| < ∞. Hence, with (66) and (68),

we obtain Assumption 2 (iii).

Under (K-2) and (K-3), using that K(t) = (2π)−1
∫
K̂(ξ) eiξtdξ, we get

Φ(λ; i, v) = (2πρj−i,T )
−1

∫ ∞

−∞
K̂(ξ) eiξ(uTji

−v)/(bTj−i)
∑

l∈T̃j(i,v)

eil(λ+2iξ/(bTj−i)) dξ ,

where T̃j(i, v) denotes the set of all l ∈ Tj(i, v) such that γj−i,T (2
il+ v) does not vanish. Denote

the length of T̃j(i, v) by N = Nj,T as in the previous case. We thus obtain

|Φ(λ; i, v)| ≤ (2πρj−i,T )
−1

∫ ∞

−∞

∣∣∣K̂(ξ)
∣∣∣ |DN (λ+ 2iξ/(bTj−i))| dξ .
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Let η > 0. Splitting the above integral as
∫∞
−∞ =

∫
2i|ξ|/(bTj−i)≤η/2 +

∫
2i|ξ|/(bTj−i)>η/2, we obtain

sup
λ∈[η,π]

|Φ(λ; i, v)| ≤(2πρj−i,T )
−1 sup

|λ|∈[η/2,π+η/2]
|DN (λ)|

+ (2πρj−i,T )
−1‖DN‖∞

∫

2i|ξ|/(bTj−i)>η/2

∣∣∣K̂(ξ)
∣∣∣ dξ .

Now, we have, for η small enough, supN≥1 sup|λ|∈[η/2,π+η/2] |DN |(λ) <∞, ‖DN‖∞ ≤ N and, un-

der (K-2), N = O(bTj) and
∫
2i|ξ|/(bTj−i)>η/2

∣∣∣K̂(ξ)
∣∣∣ dξ = o((bTj)

−1/2), which, with the previous

display, (66) and (68), implies Assumption 2 (iii). Under (K-3), the same conclusion holds using

that N = O(Tj),
∫
2i|ξ|/(bTj−i)>η/2

∣∣∣K̂(ξ)
∣∣∣ dξ = O(exp(−c2−i−1ηbTj)) and Tj exp(−c′bTj−i) =

O(1) with c′ = c2−i−1η .
Finally we show that Assumption 2 (iv) holds under (K-1), (K-2) and (K-3), successively.

Using the definition (25) and (16), we get, for some positive constant C,

Γq(u; j, T ) ≤ C
(bTj)

q

ρj,T

Tj−1∑

k=0

Kq((uTj − k)/(bTj)) +O(Γ0(u; j, T )) ,

where Kq(x) = K(x)|x|q. By definition of ρj,T , one has Γ0(u; j, T ) = O(1). Under (K-1) and
(K-2), Kq is bounded and compactly supported, so that

∑
kKq((uTj − k)/(bTj)) = O(bTj).

This, with (68) and the previous display, implies (33) for all q ≥ 0. Hence, to conclude the
proof, it only remains to show that, for q = 1, 2, under (K-3),

Tj−1∑

k=0

Kq((uTj − k)/(bTj)) = O(bTj) .

Using that K(x) = O(|x|−p0) as x → ±∞, and q ≤ 2, we separate the sum
∑Tj−1

k=0 in∑
|uTj−k|≤bTj

for which Kq((uTj − k)/(bTj)) is O(1) and
∑

|uTj−k|>bTj
for which Kq((uTj −

k)/(bTj)) is O(|(uTj − k)/(bTj)|2−p0). Hence, we get

Tj−1∑

k=0

Kq((uTj − k)/(bTj)) = O (bTj) +O


bT p0−2

j

∑

l≥bTj−1

l2−p0


 .

Observing that bTj → ∞ and p0 > 3, we obtain the desired bound. �

Lemma 5. Suppose that bT → 0 and TjbT → ∞. Then, for weights given by (37), Assumption 2
is satisfied with

δj,T ∼ (bTTj)
−1 (72)

V (i, v; i′, v′) = π 2−i−i′ , i, i′ ≥ 0, v ∈ {0, . . . , 2i − 1}, v′ ∈ {0, . . . , 2i′ − 1} . (73)

Proof. For convenience, we will omit the subscripts T and j,T in this proof when no ambiguity
arises. We set uj = [uTj ] in the following. Using (36), bTj → ∞, b → 0 and uj ∼ uTj , we get
that

ρ ∼ (bTj) . (74)

Observing that δ = γ(uj) = ρ−1, we get (72) and Assumption 2(i) follows.
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Let us now show that Assumption 2(ii) holds. Using (69), we find that
∫ π

−π
Φj,T (λ; i, v)Φj,T (λ; i′, v′) dλ =

2π

ρj−i,Tρj−i′,T
exp

(
−uj−i + v + 1

bTj−i
− uj−i′ + v′ + 1

bTj−i′

)

×
N−1∑

l=0

el{2
i/(bTj−i)+2i

′

/(bTj−i′ )} ,

where N = {2−i(uj−i−v)}∧{2−i′ (uj−i′ −v′)}. Using (16), (74), bTj → ∞, b → 0 and uj ∼ uTj,
we obtain ρj−i,T ∼ 2i(bTj), (uj−i + v+1)/(bTj−i) ∼ u/b, 2i/(bTj−i) ∼ 1/(bTj), N2i/(bTj−i) ∼
u/b and similar result with i′, v′ replacing i, v. Using these asymptotic equivalences and the
previous display, we obtain

∫ π

−π
Φj,T (λ; i, v)Φj,T (λ; i′, v′) dλ ∼ 2π

2i+i′(bTj)2
A− o(1)

2/(bTj)
, (75)

where

A = exp

(
−uj−i + v + 1

bTj−i
− uj−i′ + v′ + 1

bTj−i′
+N

{
2i

bTj−i
+

2i
′

bTj−i′

})
.

Using (16), we have N = uTj+O(1) and uj−i+v+1 = uTj2
i+O(1). Thus N2i−(uj−i+v+1) =

O(1) and the same holds with i′, v′ replacing i, v. This implies that A = exp
(
O
(
(bTj)

−1
))

→ 1.
This, (75) and (72) yield Assumption 2(ii) with V (i, v; i′, v′) defined by (73).

We finally show that Assumption 2(iii) holds. By setting N = 2−i(uj−i+v) and k = N−1− l
in (29), we obtain

|Φ(λ; i, v)| = ρ−1

∣∣∣∣∣

N−1∑

k=0

e−k{iλ+2i/(bTj−i)}

∣∣∣∣∣ ≤ ρ−1 1 + e−N2i/(bTj−i)

∣∣1− e−iλ−2i/(bTj−i)
∣∣ .

Using that N2i/(bTj−i) ∼ b−1 → ∞, δ−1/2ρ−1 → 0 and that, for any η > 0, |1 − z| does not
vanish on the compact set of complex numbers z = reiθ such that r ∈ [0, 1] and η ≤ |θ| ≤ π and
thus is lower bounded on this set, we obtain Assumption 2(iii).

Finally we show that Assumption 2 (iv) holds. By (16), we have, for any q ≥ 0,

Γq(u; j, T ) = ρ−1

uj−1∑

k=0

e−(uj−1−k)/(bTj)|uj − 1− k|q +O (Γ0(u; j, T )) .

Observe that Γ0(u; j, T ) = 1. Setting l = uj − 1 − k, and separating the above sum over

l ≤ [qbTj] + 1 for which we bound the exponential by 1 and l ≥ [qbTj] + 2 so that e−x/(bTj )xq is
decreasing on x ≥ l − 1, we get

uj−1∑

k=0

e−(uj−1−k)/(bTj )|uj − 1− k|q ≤
[bTj ]+1∑

l=0

lq +
∑

l≥[bTj ]+2

e−l/(bTj )lq

≤ O
(
(bTj)

q+1
)
+

∫

x≥[qbTj]+1
e−x/(bTj)xqdx

= O
(
(bTj)

q+1
)
.

The last two displays, (74) and (72) yield (33), which achieves the proof. �
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