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GET - Télécom Paris & CNRS - LTCI UMR 5141

46, rue Barrault, 75634 Paris Cedex 13 - France

irene.charon@enst.fr

Gérard Cohen
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Abstract

Let Fn be the binary n-cube, or binary Hamming space of dimen-
sion n, endowed with the Hamming distance, and En (respectively, On)
the set of vectors with even (respectively, odd) weight. For r ≥ 1 and
x ∈ Fn, we denote by Br(x) the ball of radius r and centre x. A code
C ⊆ Fn is said to be r-identifying if the sets Br(x)∩C, x ∈ F n, are all
nonempty and distinct. A code C ⊆ En is said to be r-discriminating
if the sets Br(x) ∩ C, x ∈ On, are all nonempty and distinct. We
show that the two definitions, which were given for general graphs, are
equivalent in the case of the Hamming space, in the following sense:
for any odd r, there is a bijection between the set of r-identifying codes
in Fn and the set of r-discriminating codes in F n+1.
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1 Introduction

We define identifying and discriminating codes in a connected, undirected
graph G = (V,E), in which a code is simply a nonempty subset of vertices.
These definitions can help, in various meanings, to unambiguously determine
a vertex. The motivations may come from processor networks where we
wish to locate a faulty vertex under certain conditions, or from the need to
identify an individual, given its set of attributes.

In G we define the usual distance d(v1, v2) between two vertices v1, v2 ∈
V as the smallest possible number of edges in any path between them. For
an integer r ≥ 0 and a vertex v ∈ V , we define Br(v) the ball of radius r

centred at v, as the set of vertices within distance r from v. Whenever two
vertices v1 and v2 are such that v1 ∈ Br(v2) (or, equivalently, v2 ∈ Br(v1)),
we say that they r-cover each other. A set X ⊆ V r-covers a set Y ⊆ V if
every vertex in Y is r-covered by at least one vertex in X.

The elements of a code C ⊆ V are called codewords. For each vertex
v ∈ V , we denote by

KC,r(v) = C ∩ Br(v)

the set of codewords r-covering v. Two vertices v1 and v2 with KC,r(v1) 6=
KC,r(v2) are said to be r-separated by code C, and any codeword belonging
to exactly one of the two sets Br(v1) and Br(v2) is said to r-separate v1

and v2.
A code C ⊆ V is called r-identifying [10] if all the sets KC,r(v), v ∈ V ,

are nonempty and distinct. In other words, every vertex is r-covered by at
least one codeword, and every pair of vertices is r-separated by at least one
codeword. Such codes are also sometimes called differentiating dominating

sets [8].
We now suppose that G is bipartite: G = (V = I ∪A,E), with no edges

inside I nor A — here, A stands for attributes and I for individuals. A code
C ⊆ A is said to be r-discriminating [4] if all the sets KC,r(i), i ∈ I, are
nonempty and distinct. From the definition we see that we can consider
only odd values of r.

In the following, we drop the general case and turn to the binary Ham-
ming space of dimension n, also called the binary n-cube, which is a regular
bipartite graph. First we need to give some specific definitions and notation.

We consider the n-cube as the set of binary row-vectors of length n, and
as so, we denote it by G = (F n, E) with F = {0, 1} and E = {{x, y} :
d(x, y) = 1}, the usual graph distance d(x, y) between two vectors x and y
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being called here the Hamming distance — it simply consists of the number
of coordinates where x and y differ. The Hamming weight of a vector x is its
distance to the all-zero vector, i.e., the number of its nonzero coordinates. A
vector is said to be even (respectively, odd) if its weight is even (respectively,
odd), and we denote by En (respectively, On) the set of the 2n−1 even (re-
spectively, odd) vectors in F n. Without loss of generality, for the definition
of an r-discriminating code, we choose the set A to be En, and the set I to
be On. Additions are carried coordinatewise and modulo two.

Given a vector x ∈ F n, we denote by π(x) its parity-check bit: π(x) = 0
if x is even, π(x) = 1 if x is odd. Therefore, if | stands for concatenation
of vectors, x|π(x) is an even vector. Finally, we denote by Mr(n) (respec-
tively, Dr(n)) the smallest possible cardinality of an r-identifying (respec-
tively, r-discriminating) code in F n.

In Section 2, we show that in the particular case of Hamming space,
the two notions of r-identifying and r-discriminating codes actually coincide
for all odd values of r and all n ≥ 2, in the sense that there is a bijection
between the set of r-identifying codes in F n and the set of r-discriminating
codes in Fn+1.

2 Identifying is discriminating

As we now show with the following two theorems, for any odd r ≥ 1, any
r-identifying code in F n can be extended into an r-discriminating code in
Fn+1, and any r-discriminating code in F n can be shortened into an r-
identifying code in F n−1. First, observe that r-identifying codes exist in F n

if and only if r < n.

Theorem 1 Let n ≥ 2, p ≥ 0 be such that 2p + 1 < n, let C ⊆ F n be a

(2p + 1)-identifying code and let

C ′ = {c|π(c) : c ∈ C}.

Then C ′ is (2p + 1)-discriminating in F n+1. Therefore,

D2p+1(n + 1) ≤ M2p+1(n). (1)

Proof. Let r = 2p + 1. By construction, C ′ contains only even vectors. We
shall prove that (a) any odd vector x ∈ On+1 is r-covered by at least one
codeword of C ′; (b) given any two distinct odd vectors x, y ∈ On+1, there is
at least one codeword in C ′ which r-separates them.

(a) We write x = x1|x2 with x1 ∈ Fn and x2 ∈ F . Because C is
r-identifying in F n, there is a codeword c ∈ C with d(x1, c) ≤ r. Let
c′ = c|π(c).

If d(x1, c) ≤ r − 1, then whatever the values of x2 and π(c) are, we
have d(x, c′) ≤ r; we assume therefore that d(x1, c) = r = 2p + 1, which
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implies that x1 and c have different parities. Since x1|x2 and c|π(c) also
have different parities, we have x2 = π(c) and d(x, c′) = r. So the codeword
c′ ∈ C ′ r-covers x.

(b) We write x = x1|x2, y = y1|y2, with x1, y1 ∈ Fn, x2, y2 ∈ F . Since
C is r-identifying in F n, there is a codeword c ∈ C which is, say, within
distance r from x1 and not from y1: d(x1, c) ≤ r, d(y1, c) > r. Let c′ =
c|π(c).

For the same reasons as above, x is within distance r from c′, whereas
obviously, d(y, c′) ≥ d(y1, c) > r. So c′ ∈ C ′ r-separates x and y.

Inequality (1) follows. �

Theorem 2 Let n ≥ 3, p ≥ 0 be such that 2p + 2 < n, let C ⊆ En be a

(2p + 1)-discriminating code and let C ′ ⊆ Fn−1 be any code obtained by the

deletion of one coordinate in C. Then C ′ is (2p + 1)-identifying in F n−1.

Therefore,

M2p+1(n − 1) ≤ D2p+1(n). (2)

Proof. Let r = 2p + 1. Let C ⊆ En be an r-discriminating code and
C ′ ⊆ Fn−1 be the code obtained by deleting, say, the last coordinate in C.
We shall prove that (a) any vector x ∈ F n−1 is r-covered by at least one
codeword of C ′; (b) given any two distinct vectors x, y ∈ F n−1, there is at
least one codeword in C ′ which r-separates them.

(a) The vector x|(π(x) + 1) ∈ F n is odd. As such, it is r-covered by a
codeword c = c′|u ∈ C ⊆ En: c′ ∈ C ′, u = π(c′), and d(x|(π(x) + 1), c) ≤ r.
This proves that x is within distance r from a codeword of C ′.

(b) Both x|(π(x) + 1) and y|(π(y) + 1) are odd vectors in F n, and there
is a codeword c = c′|u ∈ C ⊆ En, with c′ ∈ C ′, u = π(c′), which r-
separates them: without loss of generality, d(x|(π(x) + 1), c) ≤ r whereas
d(y|(π(y)+ 1), c), which is an odd integer, is at least r + 2. Then obviously,
d(x, c′) ≤ r and d(y, c′) ≥ r + 1, i.e., there is a codeword in C ′ which r-
separates x and y.

Inequality (2) follows. �

Corollary 3 For all n ≥ 2 and p ≥ 0 such that 2p + 1 < n, we have:

D2p+1(n + 1) = M2p+1(n).

�

3 Conclusion

We have shown the equivalence between discriminating and identifying codes;
the latter being already well studied, this entails a few consequences on dis-
criminating codes.
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For example, the complexity of problems on discriminating codes is the
same as that for identifying codes; in particular, it is known [9] that deciding
whether a given code C ⊆ F n is r-identifying is co-NP-complete.

For yet another issue, constructions, we refer to, e.g., [1]–[3], [6], [9], [10]
or [11]; visit also [12]. In the recent [7], tables for exact values or bounds on
M1(n), 2 ≤ n ≤ 19, and M2(n), 3 ≤ n ≤ 21, are given.

Discriminating codes have not been thoroughly studied so far; let us simply
mention [4] for a general introduction and [5] in the case of planar graphs.
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