Tracking of coordinated groups using marginalised MCMC-based Particle algorithm

Abstract : In this paper, we address the problem of detection and tracking of group and individual targets. In particular, we focus on a group model with a virtual leader which models the bulk or group parameter. To perform the sequential inference, we propose a Markov Chain Monte Carlo (MCMC)-based Particle algorithm with a marginalisation scheme using pairwise Kalman filters. Numerical simulations illustrate the ability of the algorithm to detect and track targets within groups, as well as infer both the correct group structure and the number of targets over time.
Type de document :
Communication dans un congrès
IEEE Aerospace Conference, Mar 2009, Big Sky, MT, United States. pp.1, 2009, 〈10.1109/AERO.2009.4839491〉
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal-imt.archives-ouvertes.fr/hal-00566621
Contributeur : François Septier <>
Soumis le : mardi 16 avril 2013 - 18:16:18
Dernière modification le : mercredi 17 avril 2013 - 09:46:54
Document(s) archivé(s) le : mercredi 17 juillet 2013 - 02:20:08

Fichier

Article.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

François Septier, Sze Kim Pang, Simon Godsill, Avishy Carmi. Tracking of coordinated groups using marginalised MCMC-based Particle algorithm. IEEE Aerospace Conference, Mar 2009, Big Sky, MT, United States. pp.1, 2009, 〈10.1109/AERO.2009.4839491〉. 〈hal-00566621〉

Partager

Métriques

Consultations de la notice

143

Téléchargements de fichiers

112