The Gaussian mixture MCMC particle algorithm for dynamic cluster tracking

Abstract : We present a new filtering algorithm for tracking multiple clusters of coordinated targets. Based on a Markov Chain Monte Carlo (MCMC) mechanism, the new algorithm propagates a discrete approximation of the underlying filtering density. A dynamic Gaussian mixture model is utilized for representing the time-varying clustering structure. This involves point process formulations of typical behavioral moves such as birth and death of clusters as well as merging and splitting. Following our previous work, we adopt here two strategies for increasing the sampling efficiency of the basic MCMC scheme: an evolutionary stage which allows improved exploration of the sample space, and an EM-based method for making optimized proposals based on the frame likelihood. The algorithm's performance is assessed and demonstrated in both synthetic and real tracking scenarios.
Type de document :
Communication dans un congrès
12th International Conference on Information Fusion, 2009. FUSION '09., Jul 2009, Seattle, WA, United States. pp.1179-1186, 2009
Liste complète des métadonnées

https://hal-imt.archives-ouvertes.fr/hal-00566634
Contributeur : François Septier <>
Soumis le : lundi 15 avril 2013 - 11:40:00
Dernière modification le : mardi 16 avril 2013 - 14:06:50
Document(s) archivé(s) le : mardi 16 juillet 2013 - 02:30:10

Fichier

00paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00566634, version 1

Collections

Citation

Avishy Carmi, François Septier, Simon Godsill. The Gaussian mixture MCMC particle algorithm for dynamic cluster tracking. 12th International Conference on Information Fusion, 2009. FUSION '09., Jul 2009, Seattle, WA, United States. pp.1179-1186, 2009. 〈hal-00566634〉

Partager

Métriques

Consultations de la notice

161

Téléchargements de fichiers

114