Simplicial Homology of Random Configurations

Abstract : Given a Poisson process on a $d$-dimensional torus, its random geometric simplicial complex is the complex whose vertices are the points of the Poisson process and simplices are given by the \u{C}ech complex associated to the coverage of each point. By means of Malliavin calculus, we compute explicitly the n$th$ order moment of the number of $k$-simplices. The two first order moments of this quantity allow us to find the mean and the variance of the Euler caracteristic. Also, we show that the number of any connected geometric simplicial complex converges to the Gaussian law when the intensity of the Poisson point process tends to infinity. We use a concentration inequality to find bounds for the for the distribution of the Betti number of first order and the Euler characteristic in such simplicial complex.
Type de document :
Article dans une revue
Advances in Applied Probability, Applied Probability Trust, 2014, 46 (2), pp.1-23
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal-imt.archives-ouvertes.fr/hal-00578955
Contributeur : Laurent Decreusefond <>
Soumis le : jeudi 4 juillet 2013 - 15:26:43
Dernière modification le : jeudi 11 janvier 2018 - 06:23:38
Document(s) archivé(s) le : samedi 5 octobre 2013 - 04:18:11

Fichiers

chi_mean_v3.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00578955, version 4
  • ARXIV : 1103.4457

Citation

Laurent Decreusefond, Eduardo Ferraz, Hugues Randriam, Anaïs Vergne. Simplicial Homology of Random Configurations. Advances in Applied Probability, Applied Probability Trust, 2014, 46 (2), pp.1-23. 〈hal-00578955v4〉

Partager

Métriques

Consultations de la notice

781

Téléchargements de fichiers

224