Visual Tracking by Fusing Multiple Cues with Context-Sensitive Reliabilities

Abstract :

Many researchers argue that fusing multiple cues increases the reliability and robustness of visual tracking. However, how the multi-cue integration is realized during tracking is still an open issue. In this work, we present a novel data fusion approach for multi-cue tracking using particle filter. Our method differs from previous approaches in a number of ways. First, we carry out the integration of cues both in making predictions about the target object and in verifying them through observations. Our second and more significant contribution is that both stages of integration directly depend on the dynamically changing reliabilities of visual cues. These two aspects of our method allow the tracker to easily adapt itself to the changes in the context, and accordingly improve the tracking accuracy by resolving the ambiguities.

Type de document :
Article dans une revue
Pattern Recognition, Elsevier, 2012, 45 (5), pp.1948-1959. 〈10.1016/j.patcog.2011.10.028〉
Liste complète des métadonnées

https://hal-imt.archives-ouvertes.fr/hal-00659920
Contributeur : Admin Télécom Paristech <>
Soumis le : samedi 14 janvier 2012 - 10:34:51
Dernière modification le : mercredi 21 mars 2018 - 18:57:59

Identifiants

Collections

Citation

Erkut Erdem, Séverine Dubuisson, Isabelle Bloch. Visual Tracking by Fusing Multiple Cues with Context-Sensitive Reliabilities. Pattern Recognition, Elsevier, 2012, 45 (5), pp.1948-1959. 〈10.1016/j.patcog.2011.10.028〉. 〈hal-00659920〉

Partager

Métriques

Consultations de la notice

578