The Gaussian mixture MCMC particle algorithm for dynamic cluster tracking

Abstract : We present a novel filtering algorithm for tracking multiple clusters of coordinated objects. Based on a Markov chain Monte Carlo (MCMC) mechanism, the new algorithm propagates a discrete approximation of the underlying filtering density. A dynamic Gaussian mixture model is utilized for representing the time-varying clustering structure. This involves point process formulations of typical behavioral moves such as birth and death of clusters as well as merging and splitting. For handling complex, possibly large scale scenarios, the sampling efficiency of the basic MCMC scheme is enhanced via the use of a Metropolis within Gibbs particle refinement step. As the proposed methodology essentially involves random set representations, a new type of estimator, termed the probability hypothesis density surface (PHDS), is derived for computing point estimates. It is further proved that this estimator is optimal in the sense of the mean relative entropy. Finally, the algorithm's performance is assessed and demonstrated in both synthetic and realistic tracking scenarios.
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger
Contributeur : François Septier <>
Soumis le : lundi 30 juillet 2012 - 22:04:44
Dernière modification le : jeudi 11 janvier 2018 - 06:26:40
Document(s) archivé(s) le : mercredi 31 octobre 2012 - 03:21:30


Fichiers produits par l'(les) auteur(s)




Avishy Carmi, François Septier, Simon J. Godsill. The Gaussian mixture MCMC particle algorithm for dynamic cluster tracking. Automatica, Elsevier, 2012, pp.1-14. 〈10.1016/j.automatica.2012.06.086〉. 〈hal-00721745〉



Consultations de la notice


Téléchargements de fichiers