
HAL Id: hal-00769656
https://inria.hal.science/hal-00769656

Submitted on 2 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scenario realizability with constraint optimization
Rouwaida Abdallah, Arnaud Gotlieb, Loïc Hélouët, Claude Jard

To cite this version:
Rouwaida Abdallah, Arnaud Gotlieb, Loïc Hélouët, Claude Jard. Scenario realizability with constraint
optimization. [Research Report] 2013. �hal-00769656�

https://inria.hal.science/hal-00769656
https://hal.archives-ouvertes.fr

Scenario realizability with constraint
optimization

Rouwaida Abdallah1, Arnaud Gotlieb2, Löıc Hélouët3,Claude Jard4

1ENS Cachan (antenne de Bretagne), 2 SIMULA, Norway, 3 INRIA Rennes,
4Université de Nantes

rouwaida.abdallah@irisa.fr,{arnaud.gotlieb,loic.helouet}@inria.fr,
claude.jard@univ-nantes.fr

Abstract. This work considers implementation of requirements expressed
as High-level Message Sequence Charts (HMSCs). All HMSCs are not
implementable, and the question of whether an HMSC specification can
be implemented by communicating machines is undecidable in general.
However, several subclasses such as local HMSCs can be implemented
using a simple projection operation. This paper proposes a new tech-
nique to transform an arbitrary HMSC specification into a local HMSC,
hence allowing implementation. We show that this transformation can be
automated as a constraint optimization problem. The impact of modifica-
tions brought to the original specification can be minimized w.r.t. a cost
function. The approach was evaluated on a large number of randomly
generated HMSCs. The results of this experimentation are presented and
analyzed. In particular, the evaluation shows an average runtime of a few
seconds, which demonstrates applicability of the technique.

1 Introduction

In many system development methodologies, the user first specifies the system’s
use cases. Some specific instantiations of each use case are then aggregated and
described using a formal language. In the context of distributed applications we
consider, high-level message sequence charts (HMSCs) and their variants are very
popular. They are standardized by the ITU [9], and a variant called sequence
diagrams is now part of the UML framework [5]. HMSCs are particularly useful
in the early stages of system development to describe patterns of interactions
between processes (or objects).

In a later modeling step of the development, state diagrams (i.e. automata)
prescribe a behavior for each of the processes. Finally, the processes are im-
plemented as code in a specific programming language. Parts of this design
flow can be automated. We consider here the automated transformation of
HMSCs into the model of communicating finite state machines (CFSMs), which
will serve as a skeleton for the development of future code. The produced CFSM
model is called the (abstract) implementation of the HMSC.

However, HMSCs are not always implementable. A typical situation that
prevents HMSCs’ implementation is when two distant processes may choose to

execute different scenarios (i.e. finite sequences of interactions). This can lead
to deadlock situations, and thus should be avoided. Even worse, realizability
of HMSCs, that is the question of whether an HMSC specification can be im-
plemented by an equivalent CFSM is undecidable in general [2, 11]. HMSCs in
which such distributed choices do not occur are called local HMSCs.

Several works have shown that this subclass of HMSCs can be implemented
by simple projection of the original specification on its processes [8, 10, 1]. Non-
local HMSCs are generally rejected in the considered methodology as too in-
complete or too abstract to be implemented. Based on this state of the art, we
propose to extend the possibility of automated production of CFSMs by the
use of a localization procedure that transforms any non-local HMSC into a
local one. It guarantees that every choice in the transformed local HMSC has a
leader process, which chooses one scenario and communicates its choices to the
other processes. This can be achieved by adding new messages and processes in
scenarios. Trivial but uninteresting solutions to the localization problem exist.
We are thus interested in finding solutions with the minimal number of added
messages because they correspond to the less disturbing transformation of the
specification. In our work, we propose to address the localization problem with a
constraint optimization technique. We build a constraint model where variables
represent leader processes or processes contributing to a scenario and constraints
capture the localization properties of HMSCs. A cost function is then proposed
to minimize the number of added messages. The experiments we ran on a large
class of randomly generated HMSCs, with a prototype tool implementation,
show that the localization problem can be solved in general in a few seconds on
ordinary machines.

This paper is organized as follows: Section 2 gives the basic formal defini-
tions on HMSCs. Section 3 defines localization of HMSCs. Section 4 proposes
an encoding of minimal localization as a constraint optimization problem, and
shows the correctness of the approach. Section 5 describes an experimentation
conducted to evaluate the performance of our localization procedure, and com-
ments the results. Section 6 concludes this work.

2 Basic definitions

Message Sequence Charts (MSCs for short) describe the behavior of entities of
a system called instances. It is frequently assumed that instances represent pro-
cesses of a distributed system. MSCs have a graphical and textual notation, but
are also equipped with a standardized semantics [13]. The language is composed
of two kinds of diagrams. At the lowest level, basic MSCs (or bMSCs for short)
describe interactions among instances. The communications are asynchronous.
A second layer of formalism, namely High-level MSCs (HMSCs for short), is used
to compose these basic diagrams. Roughly speaking, an HMSC is an automa-
ton which transitions are labeled by bMSCs, or by references to other HMSCs.
However, in the paper, we will consider without loss of generality that our spec-
ifications are given by only two layers of formalism: a set of bMSCs, and an
HMSC with transitions labeled by these bMSCs.

Definition 1 (bMSCs). A bMSC defined over a set of instances P is a tuple
M = (E,≤, λ, φ, µ) where E is a finite set of events, φ : E −→ P localizes each
event on one instance. λ : E −→ Σ is a labeling function that associates a type of
action to each event. The label attached to a sending event is of the form p!q(m)
denoting a sending of message m from p to q. Similarly, the label attached to
a reception is of the form p?q(m) denoting a reception on p of a message m
sent by q. Last, events labeled by p(a) represent a local action a of process p.
Labeling defines a partition of E into sets of sending events, reception events,
and local actions, respectively denoted by ES,ER and EL. µ : ES −→ ER is a
bijection that maps sending events with a corresponding reception. If µ(e) = f ,
then λ(e) = p!q(m) for some p, q,m and λ(f) = q?p(m). ≤ ⊆ E2 is a partial
order relation called the causal order.

It is required that events of the same instance are totally ordered: ∀(e1, e2) ∈
E2, φ(e1) = φ(e2) =⇒ (e1 ≤ e2)∨ (e2 ≤ e1). For an instance p, let us call ≤p this
total order. ≤ must also reflect the causality induced by the message exchanges,
i.e. ≤= (

⋃
p∈P
≤p ∪ µ)∗. The graphical representation of bMSCs defines instances

as vertical lines. All events executed by an instance are ordered from top to
bottom. Horizontal arrows represent messages from one instance to another.
Figure 1-a) is an example of bMSC, with three instances A,B,C, exchanging
two messages m1,m2. The events e1 and e3 are sending events, and the events
e2 and e4 are the corresponding receptions.

A B

m1

bMSC M1
C

m2
e1 e2

e3e4

(a)

M1 M2

n0

n1

Client Server

data

bMSC M1
Store

data

Client Server

Close

bMSC M2
Store

Close

(b)

Fig. 1: An example bMSC and an example HMSC

For a bMSC M , we will denote by min(M) = {e ∈ E | ∀e′ ∈ E, e′ ≤ e ⇒
e′ = e}, the set of minimal events of M . Intuitively, each event in min(M) can
be the first event executed in M . An instance is called minimal if it carries a
minimal event. A minimal instance (i.e. a process in φ(min(M))) is an instance
that can execute the first event in M . In other words, it can decide to start
executing M rather than another scenario. A bMSC is local if it has a single
minimal instance.

The semantics of a bMSC M is denoted by Lin(M), and defined as the lin-
earizations of M , that is sequences of actions that follow the causal ordering im-
posed by M . We refer interested readers to the appendix for details. Basic MSCs

only describe finite interactions. They have been extended with HMSCs [14] to
allow iteration, choices, and parallel composition. For simplicity, we restrict to
HMSCs without parallel frames, and with only one hierarchical level. With these
assumptions, HMSCs can be seen as automata labeled by bMSCs.

Definition 2 (HMSCs). An HMSC is a graph H = (I,N,→,M, n0), where
I is a finite set of instances, N is a finite set of nodes, n0 ∈ N is the initial
node of H, M is a finite set of bMSCs, defined over disjoint set of events, and
→⊆ N ×M×N is the transition relation.

In the rest of the paper, we consider without loss of generality that all nodes,
except possibly the initial node and sink nodes, are choice nodes (i.e. have several
successors by the transition relation). We will denote by Pi the set of active
processes that interacts within a bMSC Mi ∈M. HMSCs also have a graphical
representation: Nodes are represented by circles, references to bMSCs by boxes.
The initial node of an HMSC is connected to a downward pointing triangle, and
final nodes to an upward pointing triangle. The example of Figure 1-b) shows
an example of HMSC, with two nodes n0, n1. Intuitively, this HMSC depicts a
protocol in which three processes exchange data, before closing a session. This
very simple HMSC contains an iteration: bMSC M1 can be repeated several
times before the execution of bMSC M2. Note however that even if a bMSC M1
is seen before a bMSC M2 along a path of H, this does not mean that all events
of M1 are executed before M2 starts. The semantics of an HMSC is defined
using sequential composition of bMSCs.

We do not define formally sequential composition of bMSCs, and refer inter-
ested readers to the appendix. Intuitively, composing sequentially two bMSCs
M1 and M2 consists in drawing M2 below M1 to obtain a new bMSC. The se-
quential composition is denoted by M1 ◦M2. From this intuitive definition, we
can immediately notice that if some events in min(M2) are located on processes
that do not appear in M1, then they are also minimal in M1 ◦M2. This raises
two important remarks: First, executing M1 ◦M2 does not mean executing M1

then M2, but rather executing the bMSC obtained by concatenation of M1 and
M2, and then minimal events in a concatenation M1 ◦ . . .Mk are not all located
in M1.

A path of H is a sequence of transitions ρ = (n1,M1, n
′
1) . . . (nk,M1, n

′
k) such

that n′i = ni+1. A path is called initial if it starts from node n0. Each path
ρ = (n1,M1, n

′
1) . . . (nk,M1, n

′
k) defines a unique bMSC Mρ = M1 ◦M2 · · · ◦Mk.

The semantics L(H) of a HMSC H is defined as the set of linearizations of all
bMSCs Mρ such that ρ is an initial path of H. With this semantics, HMSCs are
very expressive. They are more expressive than finite state automata (they can
describe non-regular behaviors, as shown by the example of Figure 1-b)).

The implementation problem consists in building a set of communicating ma-
chines A = {A1, . . . Ak} (one frequently uses as model the Communicating Finite
State Machines (CFSM) proposed by [6]) such that L(A) = L(H). It is frequently
assumed that these communicating machines are obtained by simple projection
of the original HMSC on each instance. The realizability problem consists in

deciding whether there exists an implementation A such that L(A) = L(H).
Realizability was shown undecidable in general [2, 11]. On the other hand, sev-
eral papers have shown automatic and correct synthesis techniques for subclasses
of HMSCs [8, 10, 3, 1]. The largest known subclass is that of local HMSCs [4].
These results clearly show that automatic implementation can not apply in gen-
eral to HMSC. However, non-local HMSCs can be considered as too abstract to
be implemented, and need some refinement to be implementable. In the rest of
the paper, we hence focus on a transformation mechanism that transforms an
arbitrary HMSC into a local (and hence implementable) HMSC.

Let us consider the example of Figure 1-b). Node n0 is a choice node, depict-
ing a choice between two behaviors: either continue to send data (bMSC M1), or
close the data transmission (bMSC M2). However, the deciding instance in M1

is the Client, while the deciding instance in M2 is the Server. At implementa-
tion time, this may result in a situation where Client decides to perform M1 and
Server decide concurrently to perform M2, leading to a deadlock of the protocol.
Such situation is called a non-local choice, and obviously causes implementation
problems. It is then safer to implement HMSCs without non-local choices. At
each choice, a single deciding instance chooses to perform one scenario, and all
other non-deciding instances must conform to this choice.

Definition 3 (Local choice node). Let H = (I,N,→,M, n0) be an HMSC.
Let c ∈ N , c is a local choice if and only if for every pair of (non necessarily
distinct) paths ρ = (c,M1, n1)(n1,M2, n2) . . . (nk,Mk, nk+1) and
ρ′ = (c,M ′1, n

′
1)(n′1,M

′
2, n
′
2) . . . (n′q,M

′
k, n
′
q+1) there is a single minimal instance

in Mρ and in Mρ′ (i.e. φ(min(Mρ)) = φ(min(Mρ′)) and |φ(min(Mρ))| = 1).
H is called a local HMSC if all its nodes are local.

Due to the semantics of concatenation, non-locality can not be checked on a
pair of bMSCs leaving node c, but has to be checked for pairs of paths. Intuitively,
locality of an HMSC H guarantees that every choice in H is controlled by a
unique deciding instance. Checking whether an HMSC is local is decidable [10],
and one can easily show that this question is in co-NP [1]. It was shown in [8]
that for a local HMSC H = (I,N,→,M, n0), if for every Mi ∈ M we have
Pi = I, then there exists a CFSM A such that L(A) = L(H). A solution was
proposed to leverage this restriction in [1], hence allowing to implement any local
HMSC.

An immediate question that arises is: How to implement non-local HMSCs?
In the rest of the paper, we propose a solution that transforms any non-local
HMSC into a local one, hence allowing its implementation. This results in slight
modifications of the original specification. We allow additional active instances
and new messages in bMSCs, but do not change the structure of the HMSC.
Consider the example of Figure 1-b). Replacing M1 by the bMSC M3 of Figure 2
solves the non-local choice problem. Similarly, replacing M1 and M2 respectively
by M4 and M5 solves the the non-locality problem, but needs more messages.

This example raises several remarks. First, the proposed transformations are
purely syntactic, and modifying the set of minimal instances does not always

Client Server

data

bMSC M3
Store

data

Client Server

Close

bMSC M5
Store

Close

Client Server

data

bMSC M4
Store

data

m m
mm

Fig. 2: Solutions for localization of HMSC in Figure 1-b)

produce a meaningful specification. For this reason, the examples exhibit changes
involving a single message type m. A meaning for additional message has to
be chosen adequately by the designer once an HMSC is localized. The second
remark is that there are several possibilities for localization. The first solution
proposed adds one message in bMSC M1 to obtain M3. The second solution
adds two messages to M1 and one to M2, and one can notice that in M5, the
message between Store and Client is useless. Indeed, there exists an infinite
number of transformations to localize an HMSC. This calls for the following
solutions: We want to restrict to cheapest solutions (for instance solutions with
a minimal number of added messages). As we will show later, once a deciding
instance for a choice is fixed, one can compute the minimal number of messages
needed to localize this choice. As a consequence, the solutions to a localization
problem can be given in terms of choosing a deciding instances at each choice,
and instances participating to bMSCs. Then, the localization can be easily tuned
using different cost functions.

3 Localization of HMSCs

In this section, we show how to transform a non-local HMSC into a local one.
This procedure called localization consists in choosing a single deciding instance
for each bMSC M in the HMSC so that all choices become local, and then ensure
that all other instances execute their minimal events only after the first event
(the choice) of the deciding instance. This is done by adding messages, as in the
examples of Fig. 2.

Definition 4. Let M be a bMSC over a set of events E and processes P , with
minimal events e1, . . . , ek. A localized extension of M is a bMSC M ′ over a
set of events E′ ⊇ E and over P ′ ⊇ P , such that there exists a minimal event
emin ∈ E′ and for every e ≤ f ∈ E, we have e ≤′ f . The unique minimal
instance in a localized bMSC M is called the leader of M .

Note that as there exists an infinite number of extensions for a bMSC M ,
choosing extensions that are as close as possible to the original model is desirable.
The impact of localization can be simply measured as the number of added
messages. A more generic approach is to associate a cost to communications
between processes, and to choose extensions with minimal cost. This makes
sense, as for instance the cost and delays for communications via satellite are
higher than with ground networks. Similarly, the configuration of a system may
prevent two processes p and q from exchanging messages. To avoid solutions with
communications between p and q, one can design a cost function that associates
a redhibitory (or even infinite) cost to such communications.

For a given bMSC M with k minimal events, there exists a localized extension
over the same set of processes that contains exactly k − 1 additional messages.
This localized extension is built when one picks up a deciding instance d among
the minimal instances of M , and create causal dependencies from the minimal
event on instance d to all other minimal events with additional messages. Only
k− 1 messages are necessary in this case, regardless to their respective ordering
and place of insertion in the orginal bMSC. Another possibility is to pick up
another non-minimal process among those of M that do not carry a minimal
event as a leader, or even add a new process to M . In such cases, a localized
extension can always be built with exactly k additional messages.

Localization of HMSCs is more complex than localization of bMSCs. For each
non-local choice c, we have to ensure that every branch leaving c has the same
leader. Hence, this is not a property purely local to bMSCs. As for bMSCs, we
can define a notion of localized extension of a HMSC as follows:

Definition 5. Let H = (I,N,−→,M, n0) be an HMSC. H ′ = (I,N,−→′,M′, n0)
is a localized extension of H iff there is a bijection f : M → M′ such that
∀M ∈ M, f(M) is a localized extension of M , −→′= f(−→), and H ′ is a local
HMSC.

Localizing an HMSC H consists in finding M′ and the bijection f . As men-
tionned above, as there exists a (potentially) infinite number of solutions, we
consider the solutions with the smallest number of changes to the original model.
We propose to address this problem with a cost function F that evaluates the
cost of each possible transformation of H. The goal of our localization algorithm
is thus to minimize F . For the sake of simplicity in this paper, F counts the total
number of messages and instances added in M′. As localization transforms M
into M′, F is defined as a sum of individual costs of modifications. Formally,

F(H,H ′) ,
∑
M∈M

cM,f(M)

where cM,M ′ is the individual cost to transform M into M ′. When H is clear from
the context, we will write F(H ′) instead of F(H,H ′). Let Mi ∈M be a bMSC,
M ′i = f(Mi), IMi

, IM ′
i

be the set of instances in Mi and M ′i . Let k = |min(Mi)|
be the number of minimal instances in Mi, l be the leader instance of M ′i , and
x = |IM ′

i
| − |IMi | be the number of new instances in M ′i . We choose a constant

θ ∈ [0, 1] and define the cost cMi,M ′
i

for transforming Mi into M ′i as follows:

cMi,M ′
i
,

{
x ∗ θ + (k + x− 1) ∗ (1− θ) if l ∈ φ(min(Mi)) or l /∈ IMi

x ∗ θ + (k + x) ∗ (1− θ) otherwise

Intuitively, cMi,M ′
i

is the barycenter between the number of added messages,
and the number of added instances, weighted by θ. We already know that the
number of messages to add is at most k − 1 if we have k minimal instances.
Adding x instances to Mi hence yields adding (k+x− 1) messages if l is chosen
among the minimal instances of Mi or among the new instances. Similarly, if
the leader instance is chosen among instances that are not minimal w.r.t the
causal ordering, one needs to add k + x messages to localize Mi. The value θ is

chosen to penalize more the number of added processes or the number of added
messages.

Let us illustrate the computation of F on an example. Let Hc be the HMSC
on the right of Figure 3, and let H ′c be a localization of Hc. As mentionned
above, F(Hc, H

′
c) = cM1,M ′

1
+ cM2,M ′

2
+ cM3,M ′

3
. The leader of M ′1 is C and, as

C ∈ min(M1) = {A,C}, then cM ′
1

= 1 − θ (there is a single message added
in M ′1). The leader of M ′2 is also C, but C is not an instance of M2, so cM ′

2
=

θ+(1−θ) = 1 (there is a single message and a single instance added in M ′2). The
leader of M ′3 is again C. As C is an instance of M3 but not a minimal instance
we have cM ′

3
= 2 ∗ (1 − θ). As a result, F(Hc, H

′
c) = 1 − θ + 1 + 2 ∗ (1 − θ) =

4− 3 ∗ θ. One can easily notice that H ′c is local. If we compare Hc with another
localization H ′′c , depicted at the right of Figure 3, we get that cM1,M ′′

1
= 1,

cM2,M ′′
2

= θ, cM3,M ′′
3

= 0 and finally, F(Hc, H
′′
c) = 1 + θ. If θ = 0.5 then

F(Hc, H
′′
c) < F(Hc, H

′
c) and thus, localization H ′′c shoud be preferred to H ′c.

On the other hand, if θ = 1, then H ′c should be preferred. This example shows
that the cost funtion influences the choice of a particular localization solution.

M1 M2

n0

n1

A B

m1

bMSC M1
C

m2

M3

A B

m3

bMSC M2
D

m4

M C

m5

bMSC M3
N

m6

HMSC Hc
A B

m1

bMSC M1'
C

m2

A B

m3

bMSC M2'
D

m4

M C

m5

bMSC M3'
N

m6

A B

m1

bMSC M1"
C

m2

A B

m3

bMSC M2"
D

m4

M C

m5

bMSC M3"
N

m6

HMSC Hc' HMSC Hc''

mb

C
ma

mc
md

M

mz

M
mx

my

mw

Fig. 3: Localizing the HMSC Hc

The cost function F defined above that counts the number of new messages
and processes in bMSCs is only an example, and other functions can be consid-
ered. For instance, a cost function can consider concurrency among events as an
important property to preserve, and thus impose a penality everytime a pair of
events e, e′ is causally ordered in f(M), but not in M .

Note also that several localization solutions can have the same cost. For in-
stance, if F is used, the order in which messages are exchanged to obtain localized
bMSCs is ignored. Considering that the cost function is influenced only by the
number of added messages and added processes, we define F(H, {(IM ′ , lM ′)}M∈M)
as being the cost of a localization of H that satisfies IM ′ = If(M), where f(M)
has lM ′ as leader for every M ∈ M. The localization problem can be formally
defined as follows:

Definition 6. Let H = (I,N,−→,M, n0) be a non-local HMSC, and F be
a cost function. The localization problem for H,F consists in returning solu-
tions s1, . . . , sk, where each si is of the form si = {(IM ′ , lM ′)}M∈M such that
F(H, {(IM ′ , lM ′)}M∈M) is minimal, and where for each M ∈ M, IM ′ ⊆ I is a
set of instances appearing in M ′ = f(M) and lM ′ ∈ IM ′ is the leader of M ′.

4 Localization as a constraint optimization problem

This section explains how a finite domain constraint optimization model is con-
structed from a given HMSC, to minimize the cost of the localization.

4.1 Constraint solving over finite domains

A constraint solving problem is composed of a finite set of variables X1, . . . , Xn,
where each variable Xi ranges over a finite domain, noted D(Xi). An assign-
ment of a variable is a choice of a value from its domain. A set of constraints
C1, . . . , Cm is defined over the variables and the goal in a constraint solving
problem is to find solutions, i.e., assignments for all variables, that satisfy all
constraints. A constraint solving problem is satisfiable if it allows at least one
solution. When a cost function F is associated to each assignment, the problem
becomes a constraint optimization problem (COP) where the goal is to find a
solution that optimizes the cost. Such a solution is called an optimal solution.

Constraint solving frequently uses filtering and propagation. Roughly speak-
ing, the underlying idea is to consider each constraint in isolation, as a filter over
the domains. Filtering a domain means eliminating inconsistent values w.r.t. a
given a constraint. For example, if D(X) = {1, 3, 4} and D(Y) = {2, 3, 4, 5}, the
constraint X > Y filters D(X) to {3, 4} and D(Y) to {2, 3}. Once a reduction is
performed on the domain of a variable, constraint propagation awakes the other
constraints that hold on this variable, in order to propagate the reduction. Con-
straint propagation is a polynomial process: It takes O(n ∗ m ∗ d) where n is
the number of variables, m is the number of constraints and d is the maximum
number of possible values in the domains.

Constraint propagation and filtering alone do not guarantee satisfiability, and
just prune the domains without trying to instantiate variables. For example, con-
sidering the constraint system shown above, the constraint X > Y prunes the
domains D(X) to {3, 4} and D(Y) to {2, 3} but (3, 3) is not a solution of the
constraint. The constraint system may even be unsatisfiable, while constraint
propagation and filtering does not detect it (i.e., they ensure only partial sat-
isfiability). Hence, an additional step called labeling search is needed to exhibit
solutions. Labeling search consists in exploring the search space composed of
the domains of uninstantiated variables. Interestingly, a labeling procedure can
awake constraint propagation and filtering, allowing an early pruning of the
search space. In the previous example, if X is labeled by 3 then the constraint
X > Y is awoken and automatically reduce the domain of Y to {2}. A labeling
search procedure is complete when the whole search space is explored. Complete
labeling search can eventually determine satisfiability (or unsatisfiability) of a
constraint solving problem over finite domains. However, it is an exponential
procedure in the worst case. This is not surprising as determining satisfiability
of a constraint problem over finite domains is NP-hard [15].

During labeling search, when a solution s is found, the value m = F(s) of
the cost function can be recorded, and backtracking can then be enforced by
adding the constraint F(...) < m to the set of constraints (or F(...) ≤ m if one

wants to explore all optimal solutions). If another solution is found, then the
cost function F will necessarily have a cost smaller than m. This procedure,
called branch&bound [12], can be controlled by a timeout that interrupts the
search when a given time threshold is reached. Of course, the current value of F
in this case may not be a global minimum, but it is already an interesting value
for the cost function, something that we call a quasi-optimum. For localization
of HMSCs, selecting the local HMSC with the smallest cost is desirable but not
always essential. On the other hand, mastering the time spent for localization is
essential to scale to real-size problems.

4.2 From HMSC to COP

Variables. Localizing an HMSC H consists in selecting a set of participating
instances and a minimal process for each bMSC appearing in H, such that every
choice in the HMSC becomes a local choice. As this selection is not unique,
we use constraint optimization techniques to provide characteristics of localized
HMSCs with minimal cost. We propose to transform any HMSC into a constraint
optimization problem, as follows: A couple of variables (Xi, Yi) is associated to
each bMSC Mi ∈ M, where Xi represents the set of instances chosen for the
bMSC f(Mi), and Yi represents the leader in f(Mi). If I is the set of instances
of H, every Xi takes its possible values in 2I while Yi takes a value in I.

Constraints. Our constraint model is composed of domain, equality and
inclusion constraints. Domain constraints, noted DOM , are used to specify the
domains of Xi and Yi. Obviously, if a bMSC Mi is defined over a set of pro-
cesses Pi, we have Pi ⊆ Xi ⊆ I. Equality constraints, noted EQU , enforce the
locality property. For two bMSCs Mi,Mj such that there exists two transitions
(n,Mi, n1) and (n,Mj , n2) in → originating from the same node n, f(Mi) and
f(Mj) must have the same leader, i.e., Yi = Yj . We write Mi ⊗Mj , when such
choice between Mi and Mj exists in H. Locality of HMSCs is also enforced by
using inclusion constraints, noted INCL. Let Mi,Mj ∈ M be two bMSCs. We
write Mi . Mj when there exists a path (n,Mi, n

′)(n′,Mj , n
′′), i.e., when Mi is

the predecessor of Mj in H. In such case, in any localization of H, the mini-
mal instance of f(Mj), represented by variable Yj , must appear in the set of
instances of f(Mi), represented by variable Xi. In our constraint model, this
is expressed by the constraint Yj ∈ Xi. Similarly, the leader of a bMSC in the
localized solution can only be one of its instances, so we have Yi ∈ Xi for every
Mi ∈M.

It is worth noticing that the localization problem is always satisfiable, as
there exists at least one trivial solution: Select an instance in I as leader for all
bMSCs, then add this instance if needed to every bMSC, and messages from this
instance to all other instances. However, this trivial and uninteresting solution is
not necessarily minimal w.r.t. the chosen cost function. We can now prove that
our approach is sound and complete by considering the following definition:

Definition 7. Let H = (I,N,→,M, n0) be an HMSC, the constraint optimiza-
tion model associated to H is CPH = (X ,Y, C) where X = {X1, . . . , X|M|}

associates a variable to the set of instances appearing in each bMSC of f(M),
Y = {Y1, . . . , Y|M|} associates a variable to the leader selected for each bMSC of
f(M), and C = DOM ∪EQU ∪ INCL is a set of constraints defined as follows:

– DOM =
∧

i∈1...|M|
Xi ∈ 2I ∧ Pi ⊆ Xi ∧ Yi ∈ I ;

– EQU =
∧

Mi,Mj |Mi⊗Mj

Yi = Yj

– INCL =
∧

Mi,Mj |Mi.Mj

Yj ∈ Xi ∧
∧

i∈1...|M|
Yi ∈ Xi

Then, solving the localization problem for an HMSC H amounts to find an
optimal solution for CPH , w.r.t. cost function F . We have:

Theorem 1. Computing solutions for a localization problem using an optimal
solution search for the corresponding COP is a sound and complete algorithm.

This result is not really surprising, as CPH represents what is needed for
an HMSC to become local. For the sake of completeness, a formal proof of this
theorem is available in appendix.

5 Implementation and experimental results

To evaluate the approach proposed in the paper, we implemented a systematic
transformation from HMSC descriptions to COPs and conducted an experimen-
tal analysis over a large number of randomly generated HMSCs. Our implemen-
tation contains three main components G,A and S and is described in Figure 4.
G is a random HMSC generator, A is an analyzer that transforms a localization
problem for a given HMSC into a COP , as described in the previous section.
Finally S is a constraint optimization solver: We used the clpfd library of SIC-
Stus Prolog [7]. The generator G takes an expected number of distinct HMSCs
to generate (nbH), a number of bMSCs in each HMSC(nbB), and a number of
active processes in each HMSC (nbP) as inputs. As output, it produces an xml
file containing nbH randomly generated HMSCs.

G A

HMSCs.xml

All Results.xls

nbH
nbB

nbP
R
T

Th

S

Code files

Results

Fig. 4: The input and outputs of the generator, the analyser and the solver.

The analyser A takes Th, the parameter θ of the cost function F , a set of
heuristics R, and a sequence of time-out values T , as inputs. These values can be
considered as internal parameters for the constraint optimization solver: They
allow us to evaluate different strategies. In the experiments, we considered sev-
eral labeling heuristics to choose the variable and the value to enumerate first,
e.g., leftmost, first-fail, ffc, step or bisect. Leftmost is a variable-choice heuristic

that selects the first unassigned variable from a statically ordered list. First-
fail is a dynamic variable-choice heuristic that selects first the variable with the
current smallest domain. Ffc is an extension of first-fail that uses the number
of constraints on a given variable as a tie-break when two variables have the
same domain size. Step is choice-value heuristic that consists in traversing incre-
mentally the variation domain of the current variable. Finally, bisect implements
domain splitting which consists in dividing a domain into two subdomains and
propagating the subdomain informations. For example, if x takes a value in an
interval [a, b], then bisect will propagate first x ∈ [a, a+b2], and then x ∈ [a+b2 , b]
upon backtracking. For each generated HMSC H and each heuristic hi ∈ R, the
analyser creates a prolog file that contains the corresponding COP. For efficiency
reasons, a special attention has been paid to the encoding of variation domains
and constraints. Subset domains were encoded using a binary representation and
sets inclusion using efficient div/mod operations. The prolog file is then used as
input of the solver. The sequence T represents the various instants at which the
optimization process must temporarily stop, and returns the current value of
the cost function. These values are quasi-optima, representing approximations
of the global optimum. The combination between heuristics and time-out values
is useful to compare different labeling strategies. Finally, the analyser A collects
all the results returned by the solver with the time needed to provide a solution,
and stores them for a systematic comparison.

The first step of the experiment consisted in a systematic evaluation of the
performance of several heuristics to guide the solver. During this step, we con-
sidered several heuristics and time-outs. We do not report here all the results,
but show only the results for one illustrative model. Figure 5 shows the time-
aware minimization of the cost value with 12 different heuristics and time-outs
between 1s and 14s for a chosen localization problem. Heuristics descriptions
use the following syntax: [b — u] / [left — ff — ffc] / [bisect — step] / [XYC
— YXC — CXY — CYX], where b and u stand resp. for bounded costs and
unbounded costs. The heuristic bounded cost evaluates a lower bound on the cost
of a solution that can be reached from a given state. Left, ff and ffc stand for
a variable-choice heuristic, bisect and step stand for value-choice heuristic, and
XYC, etc. stand for the static order in which variables are fed to the solver. Bold
values indicate proved global minima, non-bold values indicate quasi-optima, –
indicates absence of result in the given time contract.

In Figure 5, heuristics 3,9,10 give the best results. The series of experiment
that we run shows that heuristics with an estimation of cost, and a static ordering
of variable evaluations have the best performance. Overall, the heuristics number
10 combining bisect (domain splitting), left (static variable ordering), and a cost
evaluation exhibited the best results and was selected for the next steps of the
experiment.

As next steps, we generated 11 groups of 100 random HMSCs, with 10 bM-
SCs, which is a reasonably large number, according to the existing literature
on HMSCs.We then let the number of processes grow from 4 to 14. We also
generated 12 groups of 100 HMSCs, containing exactly 8 processes, and let the

heuristics \ runtime 1 s 2 s 3 s 4 s 5 s 6 s 7 s 12 s 13 s 14 s

0 u/left/step/XYC 23 23 22 22 22 22 19 19 19 19
1 u /left/step/YXC 19 19
2 b/left/step/XYC 19 19
3 b/left/step/YXC 19
4 b/left/step/CYX - - - - - - - - 21 19
5 b/ff/step/XYC 22 19 19 19 19 19
6 b/ff/step/YXC 30 19 19 19 19 19
7 b/ff/step/CYX 30 19 19 19 19 19
8 b/ffc/step/CYX 27 22 19 19 19 19 19
9 b/left/bisect/XYC 19
10 b/left/bisect/YXC 19
11 b/left/bisect/CYX - - - - 21 19

Fig. 5: Comparing heuristics with one representative example.

number of bMSCs grow from 4 to 15. The goal of these series of experiments was
to evaluate the influence of both the number of processes and the number of bM-
SCs on the runtime of our localization approach. We expected these parameters
to influence the performance of localization, as increasing the number of bM-
SCs increases the number of variables, and increasing the number of processes
increases the size of variables’ domains. However, we have obtained solutions for
all HMSCs, which allowed us to evaluate the impact of both parameters. The
evaluation was performed on a machine equipped with INTEL P9600 core2 Duo
at 2, 53 Ghz, with 4Go of RAM. Results of both experiences are given in Figure 6
and Figure 7, using box-and-whiskers plots to show the statistical distribution
of datasets.

Fig. 6: Influence of the number of processes on the runtime execution

Both plots use logarithmic scales to tackle the big variance between runtime
measurements. As expected, the plots show exponential curves but the runtime
for each group remains quite low. For randomly generated HMSCs of reasonable
size (such as the ones found in the literature), our experimental results show that
localization using constraint optimization takes a few minutes in the worst cases,

Fig. 7: Influence of the number of bMSCs on the runtime execution

and an average duration of a few seconds. Actually, even for the largest cases
(15 bMSCs with 14 processes), the runtime of our localization approach did not
exceed 40 minutes. Although solving COPs over finite domains is NP-hard [15],
as examples of existing HMSCs usually contain less than 15 bMSCs, our local-
ization process appears to be of practical interest. Our results are encouraging,
and show that the approach is fast enough to be used in practice. However, they
have been obtained on random instances only, and thus further experiments on
non-random instances are necessary to confirm this judgment.

6 Conclusion and future work

This paper has proposed a sound and complete method to transform arbitrary
HMSCs into implementable ones. Our approach transforms an HMSC in a con-
straint optimization problem. The solution returned by a solver can be used to
build an optimal localized version of the original specification, without changing
the overall architecture of the HMSC. Once an HMSC is localized by addition
of messages and processes in bMSCs, automatic implementation techniques can
generate code for communicating processes. Our approach has been implemented
and tested on a benchmark of 2300 randomly generated HMSCs. The experimen-
tal results show that our approach is of practical interest: It usually takes less
than a few minutes to localize an HMSC.

There are four foreseen extensions of this work. First, other cost functions
can be considered as our approach does not depend on the choice of a particular
cost function. For instance, we plan to study localization with functions that
accounts for the cost of communications between instances. Second, we plan to
allow modifications of the HMSC, in addition to those brought to the bMSCs
of the specification. Considering architectural constraints that disallow commu-
nications between some processes is another challenging issue, as in this case
existence of a solution is not guaranteed. Finally, noticing that localization is a
rather syntactic procedure, the question of designating a process as a leader or
adding messages should also be addressed in more semantics terms.

Further work also includes the experimentation of our approach on indus-
trial case studies, to evaluate its performance on non-random HMSCs. We have
started a collaboration with a company that develops communicating systems
and wants to generate test cases based on requirements design. Our approach
will be useful to derive automatically test cases from HMSCs that were designed
without any requirement on implementability.

References

1. R. Abdallah, C. Jard, and L. Hélouët. Distributed implementation of message
sequence charts. Software and Systems Modeling, page to appear, 2012.

2. R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of msc
graphs. In ICALP, pages 797–808, 2001.

3. N. Baudru and R. Morin. Synthesis of safe message-passing systems. In FSTTCS,
pages 277–289, 2007.

4. H. Ben-Abdallah and S. Leue. Syntactic detection of process divergence and non-
local choice in message sequence charts. In Proc. of TACAS’97, volume 1217 of
LNCS, pages 259 – 274, 1997.

5. G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modeling Language User Guide,
The (2nd Edition) (Addison-Wesley Object Technology Series). Addison-Wesley
Professional, 2005.

6. D. Brand and P. Zafiropoulo. On communicating finite state machines. Technical
Report 1053, IBM Zurich Research Lab., 1981.

7. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint
solver. In PLILP, pages 191–206, 1997.

8. B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level
MSCs: Model-checking and realizability. Journal on Comp. and System Sciences,
72(4):617–647, 2006.

9. O. Haugen. in message sequence charts (msc). In ITU, Z.120, Editor. 1999, ITU-T:
Geneva. p. 126.

10. L. Hélouët and C. Jard. Conditions for synthesis of communicating automata from
HMSCs. In Proc. of FMICS 2000, 2000.

11. M. Lohrey. Realizability of high-level message sequence charts: closing the gaps.
Theoretical Computer Science, 309(1-3):529–554, 2003.

12. K. Marriott and P.J. Stuckey. Programming with Constraints: An Introduction.
MIT Press, 1998.

13. M. Reniers and S. Mauw. High-level Message Sequence Charts. In SDL97: Time
for Testing - SDL, MSC and Trends, Proc. of the 8th SDL Forum, pages 291–306,
1997.

14. E. Rudolph, J. Grabowski, and P. Graubmann. Tutorial on Message Sequence
Charts (MSC ’96). Tutorial, In FORTE/PSTV’96, 1996.

15. P. Van Hentenryck, V.A. Saraswat, and Y. Yves Deville. Design, implementation,
and evaluation of the constraint language cc(fd). J. Log. Program., 37(1-3):139–
164, 1998.

7 Appendix

This appendix is included for the convenience of reviewers, and is not part of
the submitted paper. In case of acceptance, it will be removed from the final
version, that will refer to a complete technical report including this appendix.

This appendix contains a definition of the semantics of HMSCs, and the proof
of Theorem 1 proving soundness and completeness of the approach.

7.1 HMSC Semantics

The semantics of a bMSC M is given in terms of sequences of actions allowed
by the causal ordering ≤. More formally, we have:

Definition 8. A linearization of a bMSC M is a word w = a1....a|E| that is the
labeling of some linear extension of M (i.e. a total order on E respecting the
causal ordering ≤). The semantics of M is the set of all its linearizations, and
is denoted Lin(M).

Let us now define the sequential composition of two basic MSCs M1,M2.

Definition 9. Let M1 = (E1,≤1, λ1, φ1, µ1), M2 = (E2,≤2, λ2, φ2, µ2) be two
bMSCs. The sequential composition of M1 and M2 is denoted M1 ◦M2, and is
the bMSC M1 ◦M2 = (E1]E2,≤1◦2, λ1]λ2, φ1]φ2, µ1]µ2), where ≤1◦2= (≤1

∪ ≤2 ∪{(e1, e2) ∈ E1 × E2 | φ(e1) = φ(e2)})∗, with] denoting disjoint union,
and f1] f2 denotes a function defined over Dom(f1)]Dom(f2), that associates
f1(x) to any x ∈ Dom(f1) and f2(x) to any x ∈ Dom(f2).

The semantics of an HMSC H = (I,N,−→,M, n0) is the set of words

L(H) = {Lin(Mρ) | ρ initial path of H}

7.2 Proof of correctness

Theorem 1. Computing solutions for a localization problem using an optimal
solution search for the corresponding constaint model is both a sound and com-
plete algorithm.

To establish soundness anc correctness, we first need a technical lemma es-
tablishing correspondence between solutions of CPH and localized HMSCs.

Lemma 1. Let H be a HMSC, and CPH be the associated constaint problem.
For every (not necessarily miminal) solution s of CPH of cost F(s), there exists
a localized extension Hs of H such that F(Hs) = F(s).

Proof : Obviously, for every solution s = {Xi, Yi}i∈1..|M|, there exists a localized
extensionHs such that for everyMi ∈M, f(Mi) hasXi as instance set, and Yi as
leader instance. The cost F(Hs) of any localized extension Hs is

∑
c(Mi, f(Mi)).

The value
∑
c(Mi, f(Mi)) be achieved by designing each M ′i as follows: set

M ′i = prefixi ◦Mi, where prefixi is:

– a bMSC containing messages from Yi to any instance in
(
φ(min(Mi))\{Yi}

)
∪(

φ(M ′i) \ φ(Mi)
)

if Yi ∈ φ(min(Mi))
– a bMSC containing messages from Yi to any instance in φ(min(Mi)) ∪(

φ(M ′i) \ φ(Mi)
)
\ {Yi} if Yi ∈

(
φ((M ′i)) \ φ(Mi)

)
– a bMSC containing messages from Yi to any instance in φ(min(Mi)) ∪

(φ(M ′i) \ φ(Mi)) if Yi ∈ φ(Mi) \ φ(min(Mi))

Obviously, taking as leaders and instance sets the choices indicated by solu-
tion s to CPH , and designingM′ = {M ′i}i∈1..|M| as defined above, we necessarily
have that Hs is localized: all bMSCs are localized, and equality constraints im-
pose that two transitions originating from the same node are labeled by bMSCs
with the same leaders. Inclusion constraints has as a consequence that for every
path ρ = (n,M ′1, n1) . . . (nk−1,M

′
k, nk), φ(min(Mρ)) = φ(min(M ′1)).ut

Proof (of Theorem 1): We can now proceed in two directions, showing first
soundness, i.e for every optimal solution {Xi, Yi} to a constraint problem CPH ,
there exists a localized extension H ′ which is minimal w.r.t the cost function
F . Let s be an optimal solution. By lemma 1, we know that there exists a lo-
calized extension Hs with the same cost as s. Now, suppose that there exists
H ′ a localized extension of H, such that F(H ′) < F(Hs). Let f ′ be the rela-
tion mapping bMSCs of M to bMSCs of M′. Then there are several bMSCs
Mi1 , . . . ,Mik such that c(Mi, f

′(Mi)) < c(Mi, f(Mi)), i.e. they are defined over
sets of instances Xi1 , . . . , Xik with leaders Yi1 , . . . , Yik , and still satisfy equality
and inclusion constraints. Hence, the solution s can not be optimal as s′ obtained
by replacing each Xi (resp Yi) by φ(f ′(Mi)) (resp φ(min(f ′(Mi))) is better than
s. Contradiction.

Let us now prove completeness, that is that every optimal localized extension
H ′ of H is defined over a set of bMSCs {M ′i = f(Mi)}i∈1..|M| is such that s =
{(φ(M ′i), φ(min(M ′I)))}i∈1..|M| is also an optimal solution for CPH . Obviously,
as H ′ is localized, s satisfies all equality and inclusion constaints imposed by
CPH , otherwise one can find a path ρ in H with |φ(min(Mρ))| > 1, or two paths
with distinct minimal instances. Now, let us suppose that s is not optimal, that
is, there exists s′ = {(Xi, Yi)}i∈1..|M| such that F(s′) < F(s). Using lemma 1,
we know that there exists a localized extension Hs′ with the same cost F(Hs′) =
F(s′). Hence H ′ is not optimal, contradiction. ut

