Y. Ahn, J. Bagrow, and S. Lehmann, Communities and Hierarchical Organization of Links in Complex Networks. eprint physics, pp.1-8, 2009.

P. James and . Bagrow, Evaluating Local Community Methods in Networks, Journal of Statistical Mechanics: Theory and Experiment, issue.05, p.8, 2007.

D. Vincent, J. Blondel, R. Guillaume, E. Lambiotte, and . Lefebvre, Fast unfolding of communities in large networks, Journal of Statistical Mechanics: Theory and Experiment, issue.10, p.10008, 2008.

P. Stephen, . Borgatti, G. Martin, . Everett, R. Paul et al., LS sets, lambda sets and other cohesive subsets, Social Networks, vol.12, issue.4, pp.337-357, 1990.

U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer et al., On Modularity Clustering, IEEE Transactions on Knowledge and Data Engineering, vol.20, issue.2, pp.172-188, 2008.
DOI : 10.1109/TKDE.2007.190689

U. Brandes, M. Gaertler, and D. Wagner, Experiments on Graph Clustering Algorithms, Proc. 11th Europ. Symp. Algorithms (ESA '03), pp.568-579, 2003.
DOI : 10.1007/978-3-540-39658-1_52

C. Roth, Compact, evolving community taxonomies using concept lattices, Contributions to 14th International Conference on Conceptual Structures, pp.172-187, 2006.

A. Capocci, D. Vito, G. Servedio, F. Caldarelli, and . Colaiori, Detecting communities in large networks. Physica A: Statistical Mechanics and its Applications, pp.669-676, 2005.

A. Clauset, Finding local community structure in networks, Physical Review E, vol.72, issue.2, p.7, 2005.
DOI : 10.1103/PhysRevE.72.026132

A. Clauset, M. Newman, and C. Moore, Finding community structure in very large networks, Physical Review E, vol.70, issue.6, pp.1-6, 2004.
DOI : 10.1103/PhysRevE.70.066111

D. Hughes, Random walks and random environments, Bulletin of Mathematical Biology, vol.1, issue.583, pp.598-599, 1996.

L. Danon, J. Duch, A. Diaz-guilera, and A. Arenas, Comparing community structure identification, Journal of Statistical Mechanics: Theory and Experiment, vol.2005, issue.09, p.10, 2005.
DOI : 10.1088/1742-5468/2005/09/P09008

URL : http://arxiv.org/abs/cond-mat/0505245

I. Derényi, G. Palla, and T. Vicsek, Clique Percolation in Random Networks, Physical Review Letters, vol.94, issue.16, p.160202, 2005.
DOI : 10.1103/PhysRevLett.94.160202

T. Evans and R. Lambiotte, Line graphs, link partitions, and overlapping communities, Physical Review E, vol.80, issue.1, p.9, 2009.
DOI : 10.1103/PhysRevE.80.016105

URL : http://arxiv.org/abs/0903.2181

L. Falzon, Determining groups from the clique structure in large social networks, Social Networks, vol.22, issue.2, pp.159-172, 2000.
DOI : 10.1016/S0378-8733(00)00021-6

S. Fortunato, Community detection in graphs, Physics Reports, vol.486, issue.3-5, 2009.
DOI : 10.1016/j.physrep.2009.11.002

C. Linton, D. Freeman, and . White, Using Galois Lattices to Represent Network Data, Sociological Methodology, vol.23, pp.127-146, 1993.

B. Ganter and R. Wille, Formal concept analysis: foundations and applications, 1999.

M. Girvan and M. Newman, Community structure in social and biological networks, Proceedings of the National Academy of Sciences, vol.99, issue.12, pp.7821-7826, 2002.
DOI : 10.1073/pnas.122653799

S. Gregory, A Fast Algorithm to Find Overlapping Communities in Networks, Machine Learning and Knowledge Discovery in Databases, vol.5211, pp.408-423, 2008.
DOI : 10.1007/978-3-540-87479-9_45

S. Gregory, Finding overlapping communities in networks by label propagation, New Journal of Physics, vol.12, issue.10, p.103018, 2009.
DOI : 10.1088/1367-2630/12/10/103018

R. Guimerà, . Danon, F. Díaz-guilera, A. Giralt, and . Arenas, Self-similar community structure in a network of human interactions, Physical Review E, vol.68, issue.6, pp.1-4, 2003.
DOI : 10.1103/PhysRevE.68.065103

R. Guimerà, M. Sales-pardo, and L. Amaral, Module identification in bipartite and directed networks, Physical Review E, vol.76, issue.3, 2007.
DOI : 10.1103/PhysRevE.76.036102

N. Gulbahce and S. Lehmann, The art of community detection. BioEssays news and reviews in molecular cellular and developmental biology, 2008.

H. David and K. Yehuda, On Clustering Using Random Walks, FSTTCS 2001, pp.18-41, 2001.

A. Jain, M. Murty, and P. Flynn, Data clustering: a review, ACM Computing Surveys, vol.31, issue.3, pp.264-323, 1999.
DOI : 10.1145/331499.331504

N. Jay, F. Kohler, and A. Napoli, Analysis of Social Communities with Iceberg and Stability-Based Concept Lattices, pp.258-272, 2008.
DOI : 10.1007/978-3-540-78137-0_19

URL : https://hal.archives-ouvertes.fr/hal-00608180

J. Kleinberg, An Impossibility Theorem for Clustering, Advances in Neural Information Processing Systems 15. Suzanna Becker, 2002.

B. Kernighan and S. Lin, An Efficient Heuristic Procedure for Partitioning Graphs, Bell System Technical Journal, vol.49, issue.2, pp.291-308, 1970.
DOI : 10.1002/j.1538-7305.1970.tb01770.x

S. O. Kuznetsov, On stability of a formal concept, Annals of Mathematics and Artificial Intelligence, vol.8, issue.3, pp.101-115, 2007.
DOI : 10.1007/s10472-007-9053-6

A. Lancichinetti, S. Fortunato, and J. Kertész, Detecting the overlapping and hierarchical community structure in complex networks, New Journal of Physics, vol.11, issue.3, p.33015, 2009.
DOI : 10.1088/1367-2630/11/3/033015

Y. Lin, J. Sun, P. Castro, R. Konuru, H. Sundaram et al., MetaFac, Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '09, pp.527-536, 2009.
DOI : 10.1145/1557019.1557080

F. Luccio and M. Sami, On the Decomposition of Networks in Minimally Interconnected Subnetworks, IEEE Transactions on Circuit Theory, vol.16, issue.2, pp.184-188, 1969.
DOI : 10.1109/TCT.1969.1082924

R. Luce, Connectivity and generalized cliques in sociometric group structure, Psychometrika, vol.14, issue.2, pp.169-190, 1950.
DOI : 10.1007/BF02289199

R. Luce and A. Perry, A method of matrix analysis of group structure, Psychometrika, vol.14, issue.2, pp.95-116, 1949.
DOI : 10.1007/BF02289146

D. Lusseau, K. Schneider, J. Oliver, P. Boisseau, E. Haase et al., The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations, Behavioral Ecology and Sociobiology, vol.54, issue.4, pp.396-405, 2003.
DOI : 10.1007/s00265-003-0651-y

J. B. Macqueen, Some methods for classification and analysis of multivariate observations, Proc. of the fth Berkeley Symposium on Mathematical Statistics and Probability, pp.281-297, 1967.

M. Crampes, M. Plantié, and B. Julien, Cliques maximales d'un graphe et treillis de Galois, MARAMI conférence sur les Modèles et l'Analyse des Réseaux : Approches Mathématiques et Informatique, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00804725

H. Miyagawa, Community Extraction in Hypergraphs Based on Adjacent Numbers, Operations Research, vol.50, pp.309-316, 2010.

T. Murata, Detecting communities from tripartite networks. WWW '10, 2010.

T. Murata, Modularity for heterogeneous networks, Proceedings of the 21st ACM conference on Hypertext and hypermedia, HT '10, p.129, 2010.
DOI : 10.1145/1810617.1810640

N. Nicolas and O. Klaus, Towards Community Detection in k-Partite k-Uniform Hypergraphs, Proceedings NIPS 2009

M. Newman, The structure of scientific collaboration networks, Proceedings of the National Academy of Sciences, vol.98, issue.2, p.7, 2000.
DOI : 10.1073/pnas.98.2.404

M. Newman, Fast algorithm for detecting community structure in networks, Physical Review E, vol.69, issue.6, 2004.
DOI : 10.1103/PhysRevE.69.066133

M. Newman, Finding community structure in networks using the eigenvectors of matrices, Physical Review E, vol.74, issue.3, p.36104, 2006.
DOI : 10.1103/PhysRevE.74.036104

M. Newman and M. Girvan, Finding and evaluating community structure in networks, Physical Review E, vol.69, issue.2, 2004.
DOI : 10.1103/PhysRevE.69.026113

M. Newman and J. Park, Why social networks are different from other types of networks, Physical Review E, vol.68, issue.3
DOI : 10.1103/PhysRevE.68.036122

V. Nicosia, . Mangioni, M. Carchiolo, and . Malgeri, Extending the definition of modularity to directed graphs with overlapping communities, Journal of Statistical Mechanics: Theory and Experiment, vol.2009, issue.03, p.3024, 2009.
DOI : 10.1088/1742-5468/2009/03/P03024

A. Noack and R. Rotta, Multi-level Algorithms for Modularity Clustering, p.12, 2008.
DOI : 10.1007/978-3-642-02011-7_24

K. Nordhausen, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition by Trevor Hastie, Robert Tibshirani, Jerome Friedman, International Statistical Review, vol.77, issue.3, pp.482-482, 2009.
DOI : 10.1111/j.1751-5823.2009.00095_18.x

G. Palla and I. Derényi, Uncovering the overlapping community structure of complex networks in nature and society, Nature, vol.387, issue.7043, pp.814-822, 2005.
DOI : 10.1038/nature03248

S. Papadopoulos, Y. Kompatsiaris, P. Vakali, and . Spyridonos, Community detection in Social Media, Data Mining and Knowledge Discovery, vol.21, issue.3, pp.1-40, 2011.
DOI : 10.1007/s10618-011-0224-z

M. Plantié and M. Crampes, From photo networks to social networks, creation and use of a social network derived with photos, Proceedings of the international conference on Multimedia, MM '10, 2010.
DOI : 10.1145/1873951.1874146

P. Pons, Détection de communautés dans les grands graphes de terrain, 2007.

A. Pothen, H. D. Simon, and K. Liou, Partitioning Sparse Matrices with Eigenvectors of Graphs, SIAM Journal on Matrix Analysis and Applications, vol.11, issue.3, p.430, 1990.
DOI : 10.1137/0611030

R. Qian, W. Zhang, and B. Yang, Community Detection in Scale-Free Networks Based on Hypergraph Model, Proceedings of the 2007 Pacific Asia conference on Intelligence and security informatics, PAISI'07, pp.226-231, 2007.
DOI : 10.1007/978-3-540-71549-8_20

C. Roth and P. Bourgine, Binding Social and Cultural Networks: A Model, Networks, nlin.AO, p.8, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00007472

C. Roth and P. Bourgine, Epistemic Communities: Description and Hierarchic Categorization Mathematical Population Studies, An International Journal of Mathematical Demography, vol.12, issue.2, pp.107-130, 2005.
DOI : 10.1080/08898480590931404

URL : http://arxiv.org/abs/nlin/0409013

C. Roth and P. Bourgine, Lattice-based dynamic and overlapping taxonomies: The case of epistemic communities, Scientometrics, vol.69, issue.2, pp.429-447, 2006.
DOI : 10.1007/s11192-006-0161-6

URL : https://hal.archives-ouvertes.fr/hal-00008413

C. Roth, S. Obiedkoy, G. Derrick, and . Kourie, ON SUCCINCT REPRESENTATION OF KNOWLEDGE COMMUNITY TAXONOMIES WITH FORMAL CONCEPT ANALYSIS, International Journal of Foundations of Computer Science, vol.19, issue.02, p.383, 2008.
DOI : 10.1142/S0129054108005735

S. Schaeffer and . Graph, Graph clustering, Computer Science Review, vol.1, issue.1, pp.27-64, 2007.
DOI : 10.1016/j.cosrev.2007.05.001

B. Stephen, . Seidman, L. Brian, and . Foster, A graph-theoretic generalization of the clique concept, Journal of Mathematical Sociology, vol.6, issue.1, pp.139-154, 1978.

N. Selvakkumaran and G. Karypis, Multiobjective hypergraph-partitioning algorithms for cut and maximum subdomain-degree minimization . Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol.25, issue.3, pp.504-517, 2006.

K. Suzuki and K. Wakita, Extracting Multi-facet Community Structure from Bipartite Networks, 2009 International Conference on Computational Science and Engineering, pp.312-319, 2009.
DOI : 10.1109/CSE.2009.451

C. Taramasco, J. Cointet, and C. Roth, Academic team formation as evolving hypergraphs, Scientometrics, vol.316, issue.3, pp.721-740, 2010.
DOI : 10.1007/s11192-010-0226-4

URL : https://hal.archives-ouvertes.fr/hal-00474160

R. Joshua, . Tyler, M. Dennis, . Wilkinson, A. Bernardo et al., Email as Spectroscopy: Automated discovery of Community Structure within Organizations, Communities and technologies, pp.81-96, 2003.

L. Wan, J. Liao, C. Wang, and X. Zhu, JCCM: Joint Cluster Communities on Attribute and Relationship Data in Social Networks. Advanced Data Mining and Applications, pp.671-679, 2009.

L. Wan, J. Liao, and X. Zhu, CDPM: Finding and Evaluating Community Structure in Social Networks, Proceedings of the 4th international conference on Advanced Data Mining and Applications, ADMA '08, pp.620-627, 2008.
DOI : 10.1007/978-3-540-88192-6_64

H. Joe and . Ward, Hierarchical Grouping to Optimize an Objective Function, Journal of the American Statistical Association, vol.58, issue.301, pp.236-244, 1963.

F. Y. Wu, The Potts model, Reviews of Modern Physics, vol.54, issue.1, 1982.
DOI : 10.1103/RevModPhys.54.235

F. Wu, A. Bernardo, and . Huberman, Finding communities in linear time: a physics approach, The European Physical Journal B - Condensed Matter, vol.38, issue.2, pp.331-338, 2003.
DOI : 10.1140/epjb/e2004-00125-x

B. Yang, D. Liu, J. Liu, and B. Furht, Discovering Communities from Social Networks: Methodologies and Applications, 2010.
DOI : 10.1007/978-1-4419-7142-5_16

T. Yang, Y. Chi, S. Zhu, Y. Gong, and R. Jin, A Bayesian Approach Toward Finding Communities and Their Evolutions in Dynamic Social Networks, Work, pp.990-1001, 2009.
DOI : 10.1137/1.9781611972795.85

F. Zaidi, A. Sallaberry, and G. Melancon, Revealing Hidden Community Structures and Identifying Bridges in Complex Networks: An Application to Analyzing Contents of Web Pages for Browsing, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, pp.198-205, 2009.
DOI : 10.1109/WI-IAT.2009.36

URL : https://hal.archives-ouvertes.fr/hal-00425144

H. Zhou and R. Lipowsky, Network Brownian Motion: A New Method to Measure Vertex-Vertex Proximity and to Identify Communities and Subcommunities, Int Conf Computational Science, pp.1062-1069, 2004.
DOI : 10.1007/978-3-540-24688-6_137