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Abstract. Liver segmentation in 3D CT images is a fundamental step
for surgery planning and follow-up. Robustness, automation and speed
are required to fulfill this task efficiently. We propose a fully-automatic
workflow for liver segmentation built on state-of-the-art algorithmic com-
ponents to meet these requirements. The liver is first localized using
regression forests. A liver probability map is computed, followed by
a global-to-local segmentation strategy using a template deformation
framework. We evaluate our method on the SLIVERO7 reference database
and confirm its state-of-the-art results on a large, varied database of 268
CT volumes. This extensive validation demonstrates the robustness of
our approach to variable fields of view, liver contrast, shape and patholo-
gies. Our framework is an attractive tradeoff between robustness, ac-
curacy (mean distance to ground truth of 1.7mm) and computational
speed (46s). We also emphasize the genericity and relative simplicity of
our framework, which requires very limited liver-specific tuning.

Keywords: liver segmentation, fully-automatic segmentation, template
deformation, regression forest, 3D CT

1 Introduction

Liver segmentation is required in many clinical contexts such as tumor resec-
tion, follow-up or liver transplantation. It enables the computation of anatomical
measures that are important for clinical diagnosis, surgery planning and radia-
tion dose calculation [1]. Manual liver segmentation in 3D is both tedious and
time-consuming and its automation is particularly challenging given the high
variability of liver shapes, pathologies and contrast in different CT phases.

The literature on liver segmentation includes a large variety of interactive,
semi-automatic and automatic methods. Due to space restrictions, we refer the
reader to recent and extensive reviews [2,3] and to the SLIVERO7 segmentation
challenge [4,5] for more detailed bibliographic overviews. Those reviews highlight
different groups of methods such as intensity-based, active contours, statistical
shape models, graph-cuts and atlas-based registration. They also show that most
segmentation methods focus on CT images with specific fields of view and partic-
ular CT phases (often contrast-enhanced) which may restrict their clinical use.



Quantitative evaluation is another key point when comparing different methods.
The challenge SLIVERO7 [4] has become a reference for liver segmentation, en-
abling fast and easy comparisons [5]. Unfortunately this database is limited to
20 training and 10 testing datasets. In the literature, only few methods were
validated on extensive databases. One can cite [6,7,8], where the authors used
proprietary databases composed of 277, 75 and 48 images respectively. However
the differences in evaluation criteria and database composition make compar-
isons of these methods difficult.

We propose a fully-automatic and robust method for the segmentation of
the liver on CT data. Our workflow is inspired by [9], which proved its efficiency
for CT kidney segmentation. Our method consists of four main parts built on
state-of-the-art algorithmic components as shown in Fig. 1. The liver and the
heart are first localized using regression forests [10] (see Section 2). We then
compute a liver probability map based on intensity distributions (see Section 3).
A template deformation framework [11] performs the liver segmentation using a
global-to-local strategy (see Section 4.2). A final refinement step is applied using
the original image.

In Section 5, we reuse and extend the validation framework of the SLIVER07
challenge and present a quantitative evaluation on both the SLIVERO07 database
and a large and diverse database (268 CT volumes with various fields of view,
contrasts, liver shapes and pathologies). The results demonstrate, in an extensive
and coherent fashion, the computational efficiency, robustness and accuracy of
our method.
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Fig. 1: Workflow of our fully-automatic liver segmentation method.

2 Liver Localization Using Regression Forest

The authors of [10] recently demonstrated that regression forests are robust and
memory efficient for the quick localization of multiple abdominal organs in 3D
CT scans (1s/tree with their C4++ implementation). They compared this method
with the commonly used atlas-based method [12] and demonstrated that it is
about a hundred times faster, uses ten times less memory and is more accurate.



The main idea behind regression forest is to use random forest for non-
linear regression of multidimensional output given multidimensional input. Using
training data, binary trees are built so as to split the data into clusters, in which
the prediction can be achieved with a simple regression function.

As in [9], we use the regression forest method to detect bounding boxes of
the liver and heart (see Fig. 1), each of them being parametrized with a vector
of R composed of the coordinates of two extremal vertices. The training phase
is performed using random subsets of voxels of the training images. The features
used are the same as in [10]: for each voxel we compute the mean intensities in
two randomly displaced boxes. This exploits the fact that the intensities in CT
images have a real physical meaning. In the testing phase a random selection of
voxels votes for the predicted labels. A detailed and comprehensive description
of the regression forests method can be found in [10].

This approach provides robust estimates of the positions and sizes of the liver
and heart which are used to derive a liver probability map described hereafter.

3 Liver Probability Map Computation

Segmenting the liver directly in the image may provide insufficient results, in
particular in images with poor contrast and fuzzy liver contours. Consequently,
we propose to also take advantage of intensity distribution to pre-process the
image and enhance liver voxels as shown in Fig. 2.

Fig. 2: Probability map computation steps: (a) original image, (b) liver predicted
box (blue), fitted mean liver (green), heart segmentation (pink),
(yellow), probability map (c) before and (d) after heart masking.

3.1 Fitting a Mean Liver Model in the Predicted Bounding Box

Mean liver computation A mean liver model is built using a set of manually
segmented liver shapes, represented as meshes. We first register the shape meshes
using the fast and robust registration method of [13]. The main interest of this
method over the classical Iterative Closest Point approach [14] is to overcome the
problem of point correspondence and to use a robust norm to obtain a consistent
registration of the shapes. The mean liver model is obtained by averaging the
implicit functions of the registered shapes.



Mean liver fitting The mean liver shape is scaled anisotropically so as to best
fit the predicted bounding box of the liver.

3.2 Estimation of the Intensity Histogram

From the previously fitted mean liver model barycenter we select a cuboidal
patch (~ 603 mm?) of voxels, as illustrated in Fig. 2(b). The intensity histogram
is computed in this patch. Its normalization provides a function h : R — [0, 1]
which gives an estimation of the probability of each intensity value to belong to
the liver.

3.3 Coarse Segmentation of the Heart

In addition to the estimation of liver intensities, we roughly segment the heart
in the image. This segmentation is performed on the original image with the
template deformation framework described in Subsection 4.1. We initialize the
algorithm with a mean heart model, built similarly to the mean liver shape and
fitted in the predicted heart bounding box (see Subsection 3.1). Deformation
parameters (see Table 1) are set so as to prevent the heart contour from leaking
in the liver. Conversely the rough binary mask M} we obtain will prevent the
liver contour from leaking in the heart in the subsequent steps.

3.4 Probability Map Computation
The liver probability map M; : £2 — [0, 1] is defined as:
Vx € 2, Mi(x) = (1 — Mp(x)) h(I(x)) (1)

where (2 is the image domain and I is the image. A subsampling of the image
can be previously applied to increase the computational efficiency.

This probability map (see Fig. 2 (d)) is used in subsequent segmentation
steps.

4 Template-Based Global-to-Local Segmentation

We use the template deformation framework introduced in [11] to extract the
liver contours from the probability map and the original image. Hereafter we
briefly describe the model-based deformation algorithm we employ and detail
the proposed global-to-local strategy to complete the segmentation.

4.1 Template Deformation Framework

The model-based approach of [11] is specially suited when target objects have
partially unclear edges as the algorithm fairly extrapolates the contours. Key ad-
vantages of the method are its speed, robustness and its ability to use both con-
tour and region information. Let us present the main principles of this method.



Given an image J : 2 — R and an initial shape model represented by an implicit
function ¢ : 2 — R, we look for the transformation ¢ : 2 — {2 minimizing the
following energy function:

B (1) :a/(¢ L (9I(x), A(x))dx + (1—a) /(M)r(x)dx FAORW) (@)

o) =1(0) ~1(R*)
——
flux term region term regularization
term

where

a € [0, 1] is a constant defining the relative influence of flux and region terms
(it enables to define whether we want to rely more on image contours or more
on intensity contrast between regions);

- ﬁj(x) is the gradient of the image J in x and (., . ) is the scalar product;

— 1i(x) is the normal vector to the shape at point x;

— r(x) is the region term defined as r(x) = log% where P,,; and Py are
the intensities distributions inside and outside the deformed object regularly
estimated on the working image;

— R(v) prevents large deviations from the original shape model;

— X € [0,1] is a constant parameter tuning the strength of the shape constraint.

In the general formulation the transformation v is decomposed as ¢y = Lo G
where G is a global linear transformation and £ is a non-rigid local transfor-
mation (refer to [11] for more details). Further we introduce G, and G, defining
a rigid and a similarity transformation, respectively. The regularization term is
defined as R(v)) = 1||£ — Id||3 where Id is the identity transformation.

4.2 Global-to-Local Segmentation Workflow

Liver segmentation is performed according to an original global-to-local strategy
on the probability map using the above-mentioned algorithm. Four steps help
refining the contour progressively: 3 steps are performed on the probability map
M; and the final step on the original image I as shown on Fig. 3. Parameters
have been set experimentally and are kept identical in all processed examples
(see Table 1). We observed a relatively low sensitivity to parameter variations
in practice.

Step 1: Initialization The liver shape model is fitted to the predicted liver
bounding box. As the template deformation method tends to favor expansion
displacements, we scale down the model by a factor 0.7. Then a first step aims at
globally registering the shape model without any local deformation. Equation 2
is minimized using the parameters reported in Table 1. The high weight on the
region term constrains the shape inside the liver, thus facilitating expansion in
subsequent deformation steps.



Table 1: Parameters used for
global-to-local segmentation.
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Step 2: Coarse segmentation We deform the previous result, still minimiz-
ing Equation 2 but with different parameters (see Table 1) allowing some local
deformations. The flux term is now more important than the region term so that
the model contours match liver edges more accurately.

Step 3: Local deformation The third step helps refining the segmentation.
Now we only optimize local deformations (see Table 1). The flux term is used
alone in order to reach the contours. Releasing the shape constraint finally helps
reaching stretched parts such as liver tips.

Step 4: Refinement on the original image To improve the accuracy of
the final segmentation, we apply guided filtering [15] on the binary mask of
the previous segmentation result, using the original image as guide. As detailed
in [15], the guided filter acts as a fast, local matting/feathering refinement step
enabling the final segmentation to better match the edges of the original image.

5 Experiments and Results

In this part we present experiments on two databases. The first one is SLIVERO7 [4],
which has become a reference for liver segmentation evaluation. Secondly we use

a large database of 268 diverse CT volumes, further demonstrating the accuracy
and robustness of the method. In those two experiments both the regression
forest and the mean liver model are learned solely on the 20 training datasets
of SLIVERO07 (publicly available), for the sake of result reproducibility. Com-
putational times are given for a C++ implementation on a machine with four
2.3GHz cores (Core i7-2820QM) and 8Go RAM.

5.1 Training

For mean liver model building and regression forests training, we use the 20 train-
ing images of SLIVERO7. Before regression forest training we do not pre-register



or normalize the images. The forest of 7 trees and 12 decision levels is learned
after randomly selecting a subset of 40.000 voxels per image. The minimum node
size is 50 and the training computational time is about 10 minutes.

5.2 Evaluation on the SLIVERO07 Database

We tested our method on the SLIVERO7 challenge database [4] which is com-
posed of 20 training and 10 testing 3D CT volumes (average slice and interslice
resolution are 0.7mm=0.1 and 1.5mm=0.9, respectively) rather focused on the
liver. The regression forest and mean liver shape were trained on the 20 training
samples while we tested the algorithm on the 10 testing volumes. We compare
our results with the best reported 3D methods [16,17,18,19] of the challenge,
pointing the first three did not obtained those results in the challenge conditions
(training on the 20 samples). Among these automatic methods ours comes in
fifth position. In Table 2 we report the same validation measures (OVE: over-
lap error, VOD: volume difference, AVD: average distance, RMSD: root mean
squared distance, MAXD: maximum distance) and inter-observer scores (see [5])
as used in the challenge. Those results have also been published online [4].

Table 2: The five best automatic methods on SLIVER07 database. We report
the computational time (per image), the number of training volumes and the
SLIVEROT7 measures. (n/a: non available)

Training OVE VOD AVD RMSD MAXD Total
Time volumes [%)] Score [%] Score [mm] Score [mm] Score [mm] Score Score

[16] 15min 122 6.1 76.2 —29 84.7 095 76.3 1.9 740 18.7 754 77.3+94
[17]  3min 112 6.5 747 1.0 864 10 745 20 723 183 759 76.8+3.8
[18] n/a n/a 6.4 751 23 850 1.0 749 19 734 208 727 76.2+5.9
[19] n/a - 76 704 —-1.3 854 1.3 68.0 24 674 221 709 724+8.6
Ours 46s 20 7.2 71.7 26 850 1.3 67.0 26 64.2 23.1 69.6 71.5+10.0

On this challenge database we get comparable results to best scored methods
(see last column in Table 2). Our method also presents the advantage of being
faster and requiring few samples for training. Moreover we thoroughly evaluate
the robustness of liver localization in various conditions hereafter.

5.3 Evaluation on a Large Varied Database

Database description The database we use in this experiment is composed
of 268 3D CT images coming from 127 patients with diverse medical conditions
(~ 41% of patients with significant alterations of the liver shape and/or appear-
ance). The database includes volumes with varied body shapes, fields of view (for
28% of the database the images include a large part of the trunk), resolution and
use or no use of contrast agents (19% of delayed or non contrasted scans, 31%



of hepatic arterial phases and 50% of portal venous phases) as shown in Fig. 5.
Slices and inter-slices resolution ranges from 0.5 to 1 mm and from 0.5 to 3 mm,
respectively. The 268 images have been segmented manually by an expert.

The regression forest we use in this experiment is the same one as the one
used previously. In Table 3 we report the results after each step thus showing
the relevance of the global-to-local strategy. For the sake of consistency we use
the same evaluation measures as in the first experiment. The localization with
regression forest is fast (1.5s) and robust as the average distance (mean distance
of box faces) is of 10.8mm for a maximum of 46.8mm. In comparison the authors
of [10] obtain an average distance of 15.7mm for liver localization. We again
emphasize that the regression forest was trained on only 20 datasets, which
further highlights the robustness of the method.

Table 3: Results and computational time after each step of the algorithm re-
ported as Mean £+ Standard-Deviation.

Time OVE VOD AVD RMSD MAXD
[sec.] (%] (%] [mm] [mm] [mm]
RF localization 1.5 - - 10.8 6.8 - -
Proba. map 6 - - - - -
Step 1 1 57.7£104 57.3+11.1 23.8+£9.9 31.6 £12.3 849274
Step 2 10 104+£6.7 —-1.0£6.0 23+£32 4.0+£46 23.3+149
Step 3 23 9.6+6.7 —-24£57 1.9+£29 33+41 21.5+£13.7
Step 4 ) 84£6.7 —-15£56 1.7£24 3.0£3.6 21.7+14.1
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Fig. 4: Boxplots for (a) step 2 (b) step 3 and (c) step 4. They represent 1st and
9th decile, 1st and 3rd quartile, median (dark-blue dash) and mean (pink cross).

After the last refinement we obtain mean and median distances of 1.7mm
and 1.3mm, respectively. The median value highlights the presence of a limited
number of outliers. Indeed for more than 90% of the database the overlap error
is below 15.8% and the average distance below 3mm. Outliers can be principally



explained by a wrong initial position of the shape model (imprecise bounding
box) and by diseases giving a very atypical appearance to the liver. In Fig. 4 we
represent boxplots of the different measures, showing the relatively compact dis-
persion of them. These results confirm those obtained on the SLIVERO7 database
and are good, despite the much larger variability of the database. Fig. 5 shows
the segmentation accuracy in various situations.

Fig. 5: Examples of segmentation results (red: ground truth, green: our result)
in varied situations: different fields of view, liver contrast, shape and pathologies.

6 Conclusion

In this paper we proposed a fully-automatic workflow for CT liver segmentation,
robust to a large variety of imaging conditions: different fields of view, different
CT phases, healthy and diseased livers. Our method relies on regression forests
to predict liver and heart bounding boxes, computes a probability map from an
estimation of the liver intensity distribution and uses a template-based deforma-
tion algorithm to perform the liver segmentation in a global-to-local strategy.
Our state-of-the-art results on the SLIVERO7 database are confirmed by an
additional, extensive evaluation on a large and heterogeneous database (268 vol-
umes). This validation demonstrates that our framework reaches an attractive
balance between robustness, accuracy (mean distance to ground truth of 1.7mm)
and speed (46s). We emphasize the genericity and relative simplicity of our
framework, which required very limited liver-specific tuning. It is reproducible
and could be improved in a number of ways. For instance, failed segmentations
could be detected and easily corrected by the clinician as the template deforma-
tion framework we employ can handle user interactions [11]. Finally we believe
similar workflows could be applied to other organs and imaging modalities.
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