Mixed-Criticality Multiprocessor Real-Time Systems: Energy Consumption vs Deadline Misses
Vincent Legout, Mathieu Jan, Laurent Pautet

To cite this version:
Abstract—Designing mixed criticality real-time systems raises numerous challenges. In particular, reducing their energy consumption while enforcing their schedulability is yet an open research topic. To address this issue, our approach exploits the ability of tasks with low-criticality levels to cope with deadline misses. On multiprocessor systems, our scheduling algorithm handles tasks with high-criticality levels such that no deadline is missed. For tasks with low-criticality levels, it finds an appropriate trade-off between the number of missed deadlines and their energy consumption. Indeed, tasks usually do not use all their worst case execution time and low-criticality tasks can reach their deadlines, even if not enough execution time was provisioned offline. Simulations show that using the best compromise, the energy consumption can be reduced up to 17% while the percentage of deadline misses is kept under 4%.

I. INTRODUCTION

Multiprocessor systems are now ubiquitous even on embedded systems and the number of cores per chip is still rising. With this constantly growing computing capacity, designers of embedded real-time systems aim to increase the number of functionalities. They also want to reduce the number of chips due to the economical constraints. This leads to the requirement of executing applications with different levels of criticality on a same multiprocessor chip. The real-time scheduling community recently looked at solutions to schedule such systems, commonly called Mixed-Criticality (MC) systems (e.g. [19], [6]).

Scheduling MC systems as traditional systems, where all tasks share the same criticality level, is possible but is over-pessimistic because it is equivalent to assume the highest level of criticality for all the tasks. The low-criticality tasks do not require this assumption; deadline misses are allowed to a certain degree as the failures are considered less severe. Such low-criticality tasks will be allowed to continue, while the system has to take remedial actions when a high-criticality task misses a deadline. Scheduling low-criticality tasks can therefore be made under more optimistic assumption. We use this ability of the low-criticality tasks to miss some of their deadlines to reduce the energy consumption of MC systems.

The energy consumption of embedded real-time systems is indeed an important concern to increase their autonomy because they are mainly powered by batteries. This work focuses on the energy consumption of processors which are responsible, directly or indirectly, for the majority of the global energy consumption. Energy consumption is divided in dynamic consumption and static consumption. The former depends on the activity of the processor while the latter is mainly due to leakage current and can only be reduced by activating a low-power state. Several research works from Austin [3], Lesueur [14] or Awan [4] show that while dynamic consumption used to be preponderant, static consumption is now responsible for the majority of the energy consumption. According to Buttazzo and al. [13], the leakage current already accounted for 50% of the total power dissipation in 90 nm technologies and this trend is only increasing as the VLSI technology is scaling down to deep sub-micron domain. Thus, this work focuses on reducing static consumption.

In this work, we aim to reduce the consumption of MC embedded systems. We assume two levels of criticality and the objective is to be more aggressive while scheduling the low-criticality tasks. The rationale is that not guaranteeing offline the deadlines of all the low-criticality tasks is not a major issue, as the tasks (low and high-criticality) often do not use their Worst Case Execution Time (WCET) online. The generated slack time can therefore be used on-line by the other low-criticality tasks to meet their deadlines. The contribution of this paper is LPDPM-MC, a power-aware scheduling algorithm for MC multiprocessor systems which finds an appropriate trade-off between the number of deadline misses of the low-criticality tasks and their energy consumption. It is based on the LPDPM algorithm [15], a scheduling algorithm for multiprocessor systems. LPDPM has two properties: it is an optimal scheduling algorithm (i.e. it generates a correct schedule whenever the task set is feasible) and it reduces static consumption. This algorithm uses linear programming to compute the schedule offline.

A. Related Work

MC systems have first been introduced by Vestal [19] and Baruah and al. ([5], [6]). In addition to its deadline and period, a MC task also specifies its criticality level (χ_i) and a set of WCETs. In this set, there is one WCET value per criticality level, up to χ_1, and higher the criticality level is, higher is the WCET value. On uniprocessor systems and for static priority tasks, their objective is to improve the schedulability
of the low-criticality tasks while guaranteeing the deadlines of the high-criticality tasks. For multiprocessor systems, Li and Baruah [17] use global scheduling while the solution of Mollison and al. [18] use partitioned scheduling to assign tasks to processor using different strategies according to the level of criticality. Burns and Davis summarized the last researches on MC systems scheduling in [8].

However, to the best of our knowledge, no solution has been proposed to reduce the energy consumption of MC systems. For systems with only one level of criticality, several algorithms have been published using either a partitioned or a global approach. Huang and al. [12] first assign the tasks to processor but they may then be reallocated to another processor online to create large idle periods. For global scheduling, where the tasks can migrate, the only solution has been proposed by Bhatti and al. [7]. They try to use only one processor to activate the other processors only when required. However, all these solutions have a complexity which prevents them to be practicable (e.g. $O(n^3)$ on each scheduling event for Bhatti, with n tasks). Besides, these scheduling algorithms are not optimal from the point of view of the CPU usage.

B. Outline

In the remainder of this paper, section II details the processor and the task model used. Section III describes how to compute a power-aware schedule, first step to reduce the energy consumption of MC systems. Then in section IV, we distinguish the low-criticality tasks from the high-criticality tasks and show how to set a tradeoff between energy and deadline miss for the low-criticality tasks. Finally, section V evaluates the solution and section VI concludes.

II. MODEL

A. Power model

We use a system with m identical processors and each processor has ns low-power states. In a low-power state, a processor cannot execute any instruction and its consumption is reduced. We further assume that each low-power state can be activated independently of the state of the other processors. This assumption prevents the use of a low-power state that deactivates a level of cache shared between a set of processors (typically the L2 cache or higher). We plan to remove this restriction in future work. However, such a deep low-power state is rarely available on embedded chips, since they have no or one level of cache. This statement is based on an analysis of the low-power states of the ARM Cortex processor family.

The most efficient low-power state has index 0. The energy consumption of state s is E_s. Coming back from a low-power state to the active state requires a transition delay and the processor cannot execute any instruction while waking up. Let Pen_s be the consumption penalty to come back from low-power state s. The more energy efficient a low-power state is, the more components are turned off and the more important is the consumption required to come back to the active state. Thus $E_0 < E_1 < ... < E_{ns}$ and $Pen_0 > Pen_1 > ... > Pen_{ns}$. To avoid having to deal with a particular case for the idle mode, a fake low-power state was added when no low-power state can be activated. It has index ns and with $E_{ns} = 1$ and $Pen_{ns} = 0$. The minimum idle period for which activating a given low-power state saves more energy than letting the processor idle is called the Break-Even time (BET). The BET of each low-power state s is BET_s and $BET_{ns} = 0$.

B. Task Model

A set Γ of n independent, synchronous, preemptible and periodic tasks is scheduled on this system. Tasks can migrate from one processor to another. Each task τ_i has a Worst Case Execution Time C_i (WCET), a period T_i and a criticality level L_i. Tasks have implicit deadlines, i.e. deadlines are equal to periods. We consider two different criticality levels: high and low, like [6] and [17]. The task set hyper-period is named H and is the least common multiple of all periods of tasks in Γ. Utilization u_i of task τ_i is the ratio $\frac{C_i}{T_i}$ and the task set global utilization is the sum of all utilizations: $U = \sum_{i=0}^{n-1} u_i$. U_{hi} is the global utilization of high-criticality tasks, while U_{lo} is the global utilization of low-criticality tasks. A job j is an instance of a task and is also characterized by its WCET $j.c$, its deadline $j.d$ and its criticality level $j.l$. The job set J_T contains all jobs of Γ scheduled during the hyper-period H. We assume $m - 1 < U < m$. Indeed, if $U < m - 1$, at least one processor can be put asleep to retrieve the assumption $m - 1 < U < m$. And if $U = m$, no low-power state can be activated.

C. Low-criticality tasks

As said earlier, the low-criticality tasks can miss some deadlines. The percentage of deadline misses depends on the criticality level of the task: the lower the criticality level is, the higher this percentage can be. To take advantage of this feature, we reserve only a percentage of the WCET of each low-criticality task. This percentage must be no less than α, with $0 \leq \alpha \leq 1$. $\alpha \times C_i$ is the minimal execution time which must be reserved for each low-criticality task τ_i.

Choosing a value for α is not straightforward. A too small value increases the number of deadline misses up to a point where the low-criticality tasks might be useless to the system. A too large value would not be aggressive enough to generate an interesting reduction of energy consumption. The choice of α is the responsibility of the system designer as he wants to focus on the energy consumption or the schedulability of the low-criticality tasks. For example, α can be chosen such that the probability of the actual execution time to be larger than $\alpha \times j.c$ is under a given percentage. Section V evaluates the efficiency of LPDPM-MC with 4 different values of α. Using a different α per low-criticality task could also be considered.

In our evaluation, we rely on a Gumbel distribution (parameters $\mu = 2$ and $\beta = 4$) for the value of the actual execution time (AET) of the low-criticality tasks with regard to their WCET, as suggested in [9]. Figure 1 pictures the probability distribution (left) and the cumulative probability (right). For instance, the probability for the actual execution time to be larger that $0.6 \times WCET$ is 88%.
In the end, our task model is different from the one introduced by Vestal in [19], as it has a different goal. Vestal improves the off-line schedulability guarantees of the low-criticality tasks, by introducing a low-criticality WCET for each high-criticality task. We decrease the deadline miss ratio of the low-criticality tasks, whose maximum allowed execution time are off-line constrained in order to reduce the energy consumption, by using the available slack time on-line.

D. Approach

As in [16], the hyper-period is divided in intervals, an interval being delimited by two task releases. \(I \) is the set of intervals and \(|I_k| \) is the duration of the \(k^{th} \) interval. A job can be present on several intervals, and we note \(w_{j,k} \) the weight of job \(j \) on interval \(k \). The weight of a job on an interval is the fraction of processor required to execute job \(j \) on interval \(k \). \(J_k \) is the subset of \(J_I \) that contains all active jobs in interval \(k \). \(E_j \) is the set of intervals on which job \(j \) can run. It must contain at least one interval. The example task set in Figure 2 has two tasks and a utilization of \(U = m \). The inequality in Equation (1) thus becomes an equality.

Inside intervals, the scheduling of \(\tau' \) is trivial when the weight of \(\tau' \) is either 0 or 1. However, when \(\tau' \) does not occupy a full interval, the execution of \(\tau' \) inside the interval plays a role in the reduction of the energy consumption. It should be executed either at the beginning or at the end of the interval. Indeed, when we merge this idle period with an idle period from a neighbor interval, we increase the opportunity to use deeper low-power states.

In our previous work [15], we used a heuristic to reduce the energy consumption (we minimized the number of pre-emptions of \(\tau' \) inside the hyper-period) and we scheduled online the execution of \(\tau' \) inside an interval. In this version of LPDPM, we refine this last step. We split \(\tau' \) into two subtasks which respective weights are computed in the linear program. The first subtask is executed at the beginning of the interval and the second at the end of the interval. This enables an offline computation of the best solution reducing the energy consumption based on the characteristics of each low-power state.

Let \(b_k \) and \(e_k \) be the weights of these two subtasks of \(\tau' \) in interval \(k \) with \(0 \leq b_k \leq 1 \) and \(0 \leq e_k \leq 1 \). The weight of \(\tau' \) in interval \(k \) is thus \(b_k + e_k \), and an idle period lasts for the whole interval \(k \) if \(b_k + e_k = 1 \). To schedule intervals online, these two subtasks are given the highest and lowest priorities, no matter their weight, so that they are executed at the beginning and at the end of the interval.

III. LPDPM: MINIMIZE STATIC CONSUMPTION

This section adds an objective function to the initial linear program to minimize the static consumption on a hyper-period. Doing the same computation on two hyper-periods would be more efficient because it would cover the transition between the two hyper-periods. However, the linear program would be twice as big for a very modest benefit.

To minimize the static consumption, the length of each idle period must be computed. An idle period in interval \(k \) starts...
with the weight e_k and can last over multiple intervals. When $e_k = 0$, the idle period may start in the next interval provided $b_{k+1} \neq 0$ because the two executions e_k and b_{k+1} are always connected. Let p_k be the length of the idle period starting at the interval k. p_k is defined as follows:

$$
p_k = \begin{cases}
 e_k \times |I_k| + b_{k+1} \times |I_{k+1}| + p_{k+1} & \text{if } b_{k+1} + e_{k+1} = 1 \\
 e_k \times |I_k| + b_{k+1} \times |I_{k+1}| & \text{otherwise}
\end{cases}
$$

(4)

Thus the idle period of interval k is extended with the idle period starting at the end of interval $k+1$ (i.e. p_{k+1}) when $b_{k+1} + e_{k+1} = 1$ (i.e. τ' occupies the full interval $k + 1$). Then, we remove the idle periods which are counted twice and introduce an additional variable q_k which gives the real length of each idle period. Due to space constraint, we omit the details on how to compute q_k.

To illustrate these notations, Figure 3 shows how to schedule task τ' on an example which $H = 16$. The WCET of τ' is 8. There are 4 intervals and $\forall k, |I_k| = 4$. The values of all variables are shown in Table I. The column 0 represents the idle period starting with the execution of b_1. Two idle periods of length 6 and 2 are created in the end of intervals 1 and 3. The variable q_k discards the idle period p_2 as the first idle period lasts across intervals 1 and 2.

TABLE I: Example with 4 intervals, $\tau'.c = 8$.

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_k \times</td>
<td>I_k</td>
<td>$</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>$r_k \times</td>
<td>I_k</td>
<td>$</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>p_k</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>q_k</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 3: Schedule of τ' from Table I.

To know which low-power state is used on each idle period, let $LP_{s,k}$ be a binary variable. $LP_{s,k} = 1$ if the low-power state s is activated during the idle period starting in the end of interval k and $LP_{s,k} = 0$ otherwise. Each idle period must activate a low-power state, thus:

$$
\forall k, \sum_s LP_{s,k} = \begin{cases}
 0 & \text{if } q_k = 0 \\
 1 & \text{otherwise}
\end{cases}
$$

(5)

A low-power state cannot be activated if the idle period is smaller than the BET. Thus this additional constraint:

$$
\forall k, \forall s, LP_{s,k} = 0 \text{ if } q_k \leq BET_s
$$

(6)

The consumption while in low-power state s is E_s and the penalty consumption required to come back to the active state is Pcn_s. Thus the consumption P_k of each idle period starting at the end of interval k is:

$$
P_k = \sum_s LP_{s,k} (E_s \times q_k + Pcn_s)
$$

(7)

Minimizing the static consumption means minimizing on each interval the consumption of the idle task and also the consumption of all tasks. Thus the final objective function of the mixed integer linear program is:

$$
\text{Minimize } \sum_k (P_k + \sum_{j \in J_k} w_{j,k} \times |I_k|)
$$

(8)

IV. LPDPM-MC: HANDLE LOW-CRITICALITY TASKS

In this section, we take advantage of the ability of the low-criticality tasks to tolerate some deadline misses in order to further reduce the energy consumption.

A. Offline

Offline, the idea is to provision only a percentage of the WCET of each low-criticality task. The sum of all weights for each low-criticality job is no longer equal to the WCET of the job. Let t_j be this difference:

$$
t_j = j.c - \sum_{E_j} w_{j,k}
$$

(9)

A low-criticality job will suffer a deadline miss if its execution time is larger than the $j.c - t_j$. If a low-criticality job does not finish its execution before its deadline, the job is dropped. In the linear program, the low-criticality jobs are no longer constrained to Equation (3) but to equation:

$$
\forall j, \alpha \times j.c \leq \sum_k w_{j,k} \times |I_k| \leq j.c
$$

(10)

Note that α only represents the minimal percentage of the execution time which has to be reserved for each low-criticality task. It can therefore be higher than $\alpha \times WCET$. However, using $\alpha \times WCET$ for all the low-criticality jobs gives the lowest consumption.

The execution times of the low-criticality jobs are reduced, thus the execution time of τ' must also be increased to keep the global utilization equal to the number of processors. Thus, instead of Equation (3), τ' is now constrained to:

$$
\sum_k w_{\tau',k} \times |I_k| \leq H
$$

(11)

Note that under these circumstances, the utilization of τ' can be up to 1, i.e. its execution time equals to the hyper-period. However, requiring the utilization of τ' to be no more than 1 bounds the reduction of the provisioned execution time that can be set using α for the low-criticality tasks. Thus, the reduction of the energy consumption is also bounded due to the following constraint:

$$
U_m + \alpha \times U_{LO} \geq m - 1
$$

(12)

To be more energy efficient, we get around this constraint by removing one processor from the system when $m - 2 < U_m + \alpha \times U_{LO} < m - 1$. The utilization of τ' therefore stays lower than 1 and all the computations are then done on $m - 1$ processors, including online scheduling. A processor is thus always in a lower-power mode with a consumption equals to zero but with an increasing risk of deadline misses. This process can be repeated to remove more processors if needed.
Online, tasks may not use their WCET but their AET instead. It thus releases idle time, called slack time. This leads to the creation of lots of small idle periods which cannot be used to activate energy efficient low-power states. Instead, our online algorithm uses this slack time to schedule the low-criticality tasks. They get more execution time and are less likely to miss their deadlines. \(t_j \) is used to know if a low-criticality task can be executed based on the current amount of available slack time.

When a processor has no task to execute, our scheduling algorithm triggers the following actions in this order:

1) If the weight of \(\tau' \) in the current interval can be increased (i.e. its remaining execution time is less than the remaining time in the interval), the slack time is given to \(\tau' \) to increase the current idle period.

2) Else the slack time is used to execute available low-criticality jobs with \(t_j > 0 \). To keep the implementation simple, the job with the smallest index is chosen. \(t_j \) is then updated while executing the job and the job ends its execution when \(t_j = 0 \). Note that a job cannot be selected if it is already executing on another processor.

3) Else a low-power state is activated (if compatible with BET constraints) according to the length of the forthcoming idle period.

This solution is aggressive because it gives a higher priority to the idle task instead of the low-criticality tasks to further reduce the energy consumption. Note that the slack time created inside an interval is only used to extend the execution time of the low-criticality tasks of the given interval. An alternative strategy would anticipate the execution of the weights of current low-criticality tasks in the following intervals.

Figure 4 illustrates the possible scenarios with 3 tasks scheduled on 2 processors. We assume \(\alpha = 0.5 \). Their criticality, WCET and period respectively are (high, 7, 12), (low, 8, 12) and (low, 2, 4). The AET of \(\tau_1 \) and \(\tau_2 \) respectively are 4 and 7. And the AET of the three jobs of \(\tau_3 \) respectively are 1, 2 and 1. The execution times of the task set are shown in Table II. The first column of \(\tau_j \) are the reserved execution times, based on the weights of each job computed by the linear program for each interval. The total reserved execution time is 7 for \(\tau_2 \) and respectively 1, 2 and 1 for the 3 jobs of \(\tau_3 \). As expected these values are not less than \(\alpha \times WCET \). The second column are the execution times consumed by the task when it uses its AET. If a job does not consume all its reserved execution time in an interval, its execution time on all subsequent intervals of the job is 0. \(\tau^I_0 \) and \(\tau^I_1 \) are the two subtasks of \(\tau' \) respectively executed at the beginning and at the end of the interval.

![Fig. 4: Offline (1.c,2) and online (2.c,3) schedule on 2 cores.](image)

In the first two lines of Figure 4, tasks use their WCET. Thus \(\tau_2 \) misses its deadline, while \(\tau_3 \) misses its deadline in its first and third jobs. In the last 2 lines, tasks use their AET. Thus in \(t = 5 \), when \(\tau_1 \) ends its execution, the slack time is given to \(\tau' \), \(\tau_1 \) finishes its execution in \(I_2 \) and is thus not executed in \(I_3 \). \(\tau_2 \) and \(\tau_3 \) use their reserved execution time until \(t = 10 \), therefore \(\tau_3 \) finishes. Then the slack time is given to \(\tau_2 \) to finish its execution because \(\tau' \) is already executed on the first processor. And at \(t = 11 \), there is no other solution than trying to activate a low-power state if the idle period is large enough. No deadlines is thus missed for this scenario.

V. Evaluation

We use a simulator to generate random task sets, with a global utilization set between 3 and 4. Each task set is scheduled on 4 processors and includes 3 high-criticality tasks and 7 low-criticality tasks. For each task set, the utilization of both high and low-criticality tasks is computed randomly between 0.01 and 0.99 with a uniform distribution using the UUniFast-Discard algorithm from Davis and Burns [11]. The period of each task is also chosen randomly between 10\(ms \) and 100\(ms \) with a uniform distribution. The task sets with a hyper-period larger than 10\(s \) are rejected to remain in a realistic bound of typical industrial systems. We allowed 5 minutes to IBM ILOG CPLEX to solve the linear program, which was enough to get a solution.

For each utilization value, 500 random task sets are generated and scheduled by two global multiprocessor schedulers: LPDPM-MC and LPDPM [15]. We are not aware of any power-aware MC scheduling algorithm which could be used as a reference. For the simulation, we assume that the high-criticality tasks use their WCET. Four different values of \(\alpha \) are used for LPDPM-MC: 0.2, 0.4, 0.6 and 0.8. Setting \(\alpha \) to 0.2 and 0.4 is more aggressive because the probabilities for the actual execution time to be less than \(0.2 \times WCET \) and \(0.4 \times WCET \) are respectively only 20\% and 60\%. The other values are more conservative because this percentage grows respectively up to 85\% and 96\%.

Table III describes the characteristics of the low-power states we consider in our simulations. The definition of these three states as well as their energy consumption and their transition delay is based on an analysis of the hardware capabilities of the STM32L [2] and the MPC551x [1].

Figure 5 plots the mean global energy consumption of LPDPM-MC for each value of \(\alpha \). All consumptions are relative to the consumption of LPDPM, which is therefore always 1. It
includes the consumption while processors are idle and while executing the low-criticality tasks. But it does not include the consumption while executing the high-criticality tasks which is identical for all the schedulers. LPDPM-MC with $\alpha = 0.2$ is the most efficient scheduler with an energy consumption reduction up to 35%. When α grows, the energy efficiency of the scheduler is reduced but is still 17% for $\alpha = 0.4$ and up to 10% for $\alpha = 0.6$. The energy consumption improvement is almost null for $\alpha = 0.8$.

We also computed the deadline miss ratio, i.e. the ratio between the number of deadline misses and the total number of jobs for low-criticality tasks only. The highest ratio of deadline misses, from 10% up to 28%, is obtained when $\alpha = 0.2$. As expected, when α increases, the deadline miss ratio decreases. The ratio is between 2% and 5% when $\alpha = 0.4$ and goes below 2% when $\alpha > 0.4$. Based on these results, choosing $\alpha = 0.4$ seems appropriate to significantly reduce the energy consumption while keeping a low ratio of deadline misses.

VI. CONCLUSION

This paper introduces LPDPM-MC, a multiprocessor real-time scheduling algorithm to reduce the energy consumption of mixed-critical systems. Offline, it only reserves a percentage of the WCET of the low-criticality tasks. The slack time generated online by tasks is then used to reduce the ratio of deadline miss for these low-criticality tasks. The designer can control the aggressiveness of the solution depending on whether the focus should be on reducing the energy consumption or the deadline misses. Results show that LPDPM-MC can be 17% more energy efficient than the non mixed-critical aware scheduling algorithms using the same approach, while the deadline miss ratio is lower than 4%. Higher energy efficiency is achievable but with higher deadline miss ratios.

In a future work, we would like to evaluate the tradeoff given by LPDPM-MC when using others distributions for the AET of tasks. To be more flexible, it would be interesting to allow different values of α, one for each task. Another idea would be to fix as an objective the energy consumption reduction compared to LPDPM. The output will then be the largest possible value of α for the low-criticality tasks fulfilling this objective. Finally, we plan to integrate conditions to better take advantage of the low-power states that must be activated on all processors simultaneously.

REFERENCES