
HAL Id: hal-00922522
https://imt.hal.science/hal-00922522

Submitted on 27 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed-Criticality Multiprocessor Real-Time Systems:
Energy Consumption vs Deadline Misses

Vincent Legout, Mathieu Jan, Laurent Pautet

To cite this version:
Vincent Legout, Mathieu Jan, Laurent Pautet. Mixed-Criticality Multiprocessor Real-Time Systems:
Energy Consumption vs Deadline Misses. First Workshop on Real-Time Mixed Criticality Systems
(ReTiMiCS), Aug 2013, Taipei, Taiwan. pp.1-6. �hal-00922522�

https://imt.hal.science/hal-00922522
https://hal.archives-ouvertes.fr

Mixed-Criticality Multiprocessor Real-Time

Systems: Energy Consumption vs Deadline Misses

Vincent Legout, Mathieu Jan

CEA, LIST,

Embedded Real Time Systems Laboratory

F-91191 Gif-sur-Yvette, France

{vincent.legout,mathieu.jan}@cea.fr

Laurent Pautet

Institut Telecom

TELECOM ParisTech

LTCI - UMR 5141 Paris, France

laurent.pautet@telecom-paristech.fr

Abstract—Designing mixed criticality real-time systems raises
numerous challenges. In particular, reducing their energy con-
sumption while enforcing their schedulability is yet an open
research topic. To address this issue, our approach exploits the
ability of tasks with low-criticality levels to cope with deadline
misses. On multiprocessor systems, our scheduling algorithm
handles tasks with high-criticality levels such that no deadline
is missed. For tasks with low-criticality levels, it finds an
appropriate trade-off between the number of missed deadlines
and their energy consumption. Indeed, tasks usually do not
use all their worst case execution time and low-criticality tasks
can reach their deadlines, even if not enough execution time
was provisioned offline. Simulations show that using the best
compromise, the energy consumption can be reduced up to 17%
while the percentage of deadline misses is kept under 4%.

I. INTRODUCTION

Multiprocessor systems are now ubiquitous even on embed-

ded systems and the number of cores per chip is still rising.

With this constantly growing computing capacity, designers

of embedded real-time systems aim to increase the number

of functionalities. They also want to reduce the number of

chips due to the economical constraints. This leads to the

requirement of executing applications with different levels

of criticality on a same multiprocessor chip. The real-time

scheduling community recently looked at solutions to sched-

ule such systems, commonly called Mixed-Criticality (MC)

systems (e.g. [19], [6]).

Scheduling MC systems as traditional systems, where all

tasks share the same criticality level, is possible but is over-

pessimistic because it is equivalent to assume the highest level

of criticality for all the tasks. The low-criticality tasks do

not require this assumption: deadline misses are allowed to

a certain degree as the failures are considered less severe.

Such low-criticality tasks will be allowed to continue, while

the system has to take remedial actions when a high-criticality

task misses a deadline. Scheduling low-criticality tasks can

therefore be made under more optimistic assumption. We use

this ability of the low-criticality tasks to miss some of their

deadlines to reduce the energy consumption of MC systems.

The energy consumption of embedded real-time systems

is indeed an important concern to increase their autonomy

because they are mainly powered by batteries. This work

focuses on the energy consumption of processors which are

responsible, directly or indirectly, for the majority of the

global energy consumption. Energy consumption is divided

in dynamic consumption and static consumption. The former

depends on the activity of the processor while the latter is

mainly due to leakage current and can only be reduced by

activating a low-power state. Several research works from

Austin [3], Lesueur [14] or Awan [4] show that while dynamic

consumption used to be preponderant, static consumption is

now responsible for the majority of the energy consumption.

According to Buttazzo and al. [13], the leakage current already

accounted for 50% of the total power dissipation in 90 nm

technologies and this trend is only increasing as the VLSI

technology is scaling down to deep sub-micron domain. Thus,

this work focuses on reducing static consumption.

In this work, we aim to reduce the consumption of MC

embedded systems. We assume two levels of criticality and the

objective is to be more aggressive while scheduling the low-

criticality tasks. The rationale is that not guaranteeing offline

the deadlines of all the low-criticality tasks is not a major issue,

as the tasks (low and high-criticality) often do not use their

Worst Case Execution Time (WCET) online. The generated

slack time can therefore be used on-line by the other low-

criticality tasks to meet their deadlines. The contribution of this

paper is LPDPM-MC, a power-aware scheduling algorithm

for MC multiprocessor systems which finds an appropriate

trade-off between the number of deadline misses of the low-

criticality tasks and their energy consumption. It is based

on the LPDPM algorithm [15], a scheduling algorithm for

multiprocessor systems. LPDPM has two properties: it is

an optimal scheduling algorithm (i.e. it generates a correct

schedule whenever the task set is feasible) and it reduces

static consumption. This algorithm uses linear programming

to compute the schedule offline.

A. Related Work

MC systems have first been introduced by Vestal [19] and

Baruah and al. ([5], [6]). In addition to its deadline and period,

a MC task also specifies its criticality level (χi) and a set of

WCETs. In this set, there is one WCET value per criticality

level, up to χi, and higher the criticality level is, higher

is the WCET value. On uniprocessor systems and for static

priority tasks, their objective is to improve the schedulability

of the low-criticality tasks while guaranteeing the deadlines

of the high-criticality tasks. For multiprocessor systems, Li

and Baruah [17] use global scheduling while the solution of

Mollison and al. [18] use partitioned scheduling to assign tasks

to processor using different strategies according to the level

of criticality. Burns and Davis summarized the last researches

on MC systems scheduling in [8].

However, to the best of our knowledge, no solution has

been proposed to reduce the energy consumption of MC

systems. For systems with only one level of criticality, several

algorithms have been published using either a partitioned or

a global approach. Huang and al. [12] first assign the tasks

to processor but they may then be reallocated to another

processor online to create large idle periods. For global

scheduling, where the tasks can migrate, the only solution has

been proposed by Bhatti and al. [7]. They try to use only one

processor to activate the other processors only when required.

However, all these solutions have a complexity which prevents

them to be practicable (e.g. O(n3) on each scheduling event

for Bhatti, with n tasks). Besides, these scheduling algorithms

are not optimal from the point of view of the CPU usage.

B. Outline

In the remainder of this paper, section II details the pro-

cessor and the task model used. Section III describes how

to compute a power-aware schedule, first step to reduce the

energy consumption of MC systems. Then in section IV, we

distinguish the low-criticality tasks from the high-criticality

tasks and show how to set a tradeoff between energy and

deadline miss for the low-criticality tasks. Finally, section V

evaluates the solution and section VI concludes.

II. MODEL

A. Power model

We use a system with m identical processors and each

processor has ns low-power states. In a low-power state, a

processor cannot execute any instruction and its consumption

is reduced. We further assume that each low-power state can

be activated independently of the state of the other processors.

This assumption prevents the use of a low-power state that

deactivates a level of cache shared between a set of processors

(typically the L2 cache or higher). We plan to remove this

restriction in future work. However, such a deep low-power

state is rarely available on embedded chips, since they have

no or one level of cache. This statement is based on an analysis

of the low-power states of the ARM Cortex processor family.

The most efficient low-power state has index 0. The energy

consumption of state s is Es. Coming back from a low-power

state to the active state requires a transition delay and the

processor cannot execute any instruction while waking up. Let

Pens be the consumption penalty to come back from low-

power state s. The more energy efficient a low-power state is,

the more components are turned off and the more important

is the consumption required to come back to the active state.

Thus E0 < E1 < ... < Ens and Pen0 > Pen1 > ... >

Penns. To avoid having to deal with a particular case for the

idle mode, a fake low-power state was added when no low-

power state can be activated. It has index ns and with Ens = 1
and Penns = 0. The minimum idle period for which activating

a given low-power state saves more energy than letting the

processor idle is called the Break-Even time (BET). The BET

of each low-power state s is BETs and BETns = 0.

B. Task Model

A set Γ of n independent, synchronous, preemptible and

periodic tasks is scheduled on this system. Tasks can migrate

from one processor to another. Each task τi has a Worst Case

Execution Time Ci (WCET), a period Ti and a criticality level

Li. Tasks have implicit deadlines, i.e. deadlines are equal to

periods. We consider two different criticality levels: high and

low, like [6] and [17]. The task set hyper-period is named H

and is the least common multiple of all periods of tasks in

Γ. Utilization ui of task τi is the ratio Ci

Ti
and the task set

global utilization is the sum of all utilizations: U =
∑n−1

i=0
ui.

UHI is the global utilization of high-criticality tasks, while ULO

is the global utilization of low-criticality tasks. A job j is an

instance of a task and is also characterized by its WCET j.c,

its deadline j.d and its criticality level j.l. The job set JΓ
contains all jobs of Γ scheduled during the hyper-period H .

We assume m− 1 < U < m. Indeed, if U < m− 1, at least

one processor can be put asleep to retrieve the assumption

m− 1 < U < m. And if U = m, no low-power state can be

activated.

C. Low-criticality tasks

As said earlier, the low-criticality tasks can miss some

deadlines. The percentage of deadline misses depends on the

criticality level of the task: the lower the criticality level is,

the higher this percentage can be. To take advantage of this

feature, we reserve only a percentage of the WCET of each

low-criticality task. This percentage must be no less than α,

with 0 ≤ α ≤ 1. α×Ci is the minimal execution time which

must be reserved for each low-criticality task τi.

Choosing a value for α is not straightforward. A too small

value increases the number of deadline misses up to a point

where the low-criticality tasks might be useless to the system.

A too large value would not be aggressive enough to generate

an interesting reduction of energy consumption. The choice of

α is the responsibility of the system designer as he wants to

focus on the energy consumption or the schedulability of the

low-criticality tasks. For example, α can be chosen such that

the probability of the actual execution time to be larger than

α × j.c is under a given percentage. Section V evaluates the

efficiency of LPDPM-MC with 4 different values of α. Using

a different α per low-criticality task could also be considered.

In our evaluation, we rely on a Gumbel distribution (param-

eters µ = 2 and β = 4) for the value of the actual execution

time (AET) of the low-criticality tasks with regard to their

WCET, as suggested in [9]. Figure 1 pictures the probability

distribution (left) and the cumulative probability (right). For

instance, the probability for the actual execution time to be

larger that 0.6×WCET is 88%.

Fig. 1: Distribution of execution times for low-criticality tasks.

0 20 40 60 80 100

Execution time (% WCET)
0.000

0.005

0.010

0.015

0.020

0.025

P
ro

b
a
b
ili

ty

0 20 40 60 80 100

Execution time (% WCET)
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty α = 0.6

Fig. 2: 2 tasks with a period of 4 and 12 respectively.

τ
1

t

τ
2

t
0 4 8 12

w
1,1

w
2,2

w
3,3

w
4,1

w
4,2

w
4,3

I
1

I
2

I
3

In the end, our task model is different from the one

introduced by Vestal in [19], as it has a different goal. Vestal

improves the off-line schedulability guarantees of the low-

criticality tasks, by introducing a low-criticality WCET for

each high-criticality task. We decrease the deadline miss ratio

of the low-criticality tasks, whose maximum allowed execution

time are off-line constrained in order to reduce the energy

consumption, by using the available slack time on-line.

D. Approach

As in [16], the hyper-period is divided in intervals, an

interval being delimited by two task releases. I is the set of

intervals and |Ik| is the duration of the kth interval. A job can

be present on several intervals, and we note wj,k the weight of

job j on interval k. The weight of a job on an interval is the

fraction of processor required to execute job j on interval k.

Jk is the subset of JΓ that contains all active jobs in interval

k. Ej is the set of intervals on which job j can run. It must

contain at least one interval. The example task set in Figure 2

has two tasks and four jobs (jobs 1 to 3 from τ1 and job 4 from

τ2). With this example, E4 is {I1, I2, I3} and J1 is {1, 4}.

Computing the complete schedule is a two steps process.

First, the weights of all tasks on all intervals are computed

with linear programming, using the WCET of tasks. The linear

program consists of a set of linear constraints to ensure the

system is schedulable and an objective function to reduce its

energy consumption. Second, tasks are scheduled online inside

intervals using the weights computed offline. The constraints

required to guarantee the schedulability of the system are [16]:

∀k,
∑

j∈Jk

wj,k ≤ m (1)

∀k, ∀j, 0 ≤ wj,k ≤ 1 (2)

∀j,
∑

k∈Ej

wj,k × |Ik| = j.c (3)

The first inequality means that global utilization on an

interval must not be larger the number of processors, thus

any interval is schedulable. The second inequality forbids the

duration of a job on an interval to be negative or to exceed the

length of the interval. This is necessary so that a task can be

scheduled in an interval. Finally, the last equation guarantees

that all jobs are completely executed.

Online, intervals are scheduled using FPZL (Fixed Priority

until Zero Laxity) [10] where priorities are assigned to jobs

according to their weight (the higher the weight the higher

the priority). FPZL is a multiprocessor scheduling algorithm

which is optimal with regard to processor utilization when

all tasks share the same deadline. Section III then adds to

the linear program an objective function to reduce the static

consumption.

E. Idle time: task τ ′

To account for the time where processors are expected to

be idle, an additional periodic task τ ′ is added, as in [15]. τ ′

has a period of H and a utilization of m−U , thus lower than

1. Let τ ′.c be its execution time on a hyper-period. Thus the

task set now has n + 1 tasks and U = m. The inequality in

Equation (1) thus becomes an equality.

Inside intervals, the scheduling of τ ′ is trivial when the

weight of τ ′ is either 0 or 1. However, when τ ′ does not

occupy a full interval, the execution of τ ′ inside the interval

plays a role in the reduction of the energy consumption. It

should be executed either at the beginning or at the end of the

interval. Indeed, when we merge this idle period with an idle

period from a neighbor interval, we increase the opportunity

to use deeper low-power states.

In our previous work [15], we used a heuristic to reduce

the energy consumption (we minimized the number of pre-

emptions of τ ′ inside the hyper-period) and we scheduled

online the execution of τ ′ inside an interval. In this version of

LPDPM, we refine this last step. We split τ ′ into two subtasks

which respective weights are computed in the linear program.

The first subtask is executed at the beginning of the interval

and the second at the end of the interval. This enables an

offline computation of the best solution reducing the energy

consumption based on the characteristics of each low-power

state.

Let bk and ek be the weights of these two subtasks of τ ′

in interval k with 0 ≤ bk ≤ 1 and 0 ≤ ek ≤ 1. The weight

of τ ′ in interval k is thus bk + ek, and an idle period lasts

for the whole interval k if bk + ek = 1. To schedule intervals

online, these two subtasks are given the highest and lowest

priorities, no matter their weight, so that they are executed at

the beginning and at the end of the interval.

III. LPDPM: MINIMIZE STATIC CONSUMPTION

This section adds an objective function to the initial linear

program to minimize the static consumption on a hyper-period.

Doing the same computation on two hyper-periods would be

more efficient because it would cover the transition between

the two hyper-periods. However, the linear program would be

twice as big for a very modest benefit.

To minimize the static consumption, the length of each idle

period must be computed. An idle period in interval k starts

with the weight ek and can last over multiple intervals. When

ek = 0, the idle period may start in the next interval provided

bk+1 6= 0 because the two executions ek and bk+1 are always

connected. Let pk be the length of the idle period starting at

the interval k. pk is defined as follows:

pk =

{

ek × |Ik|+ bk+1 × |Ik+1|+ pk+1 if bk+1 + ek+1 = 1

ek × |Ik|+ bk+1 × |Ik+1| otherwise

(4)

Thus the idle period of interval k is extended with the idle

period starting at the end of interval k + 1 (i.e. pk+1) when

bk+1 + ek+1 = 1 (i.e. τ ′ occupies the full interval k + 1).

Then, we remove the idle periods which are counted twice

and introduce an additional variable qk which gives the real

length of each idle period. Due to space constraint, we omit

the details on how to compute qk.

To illustrate these notations, Figure 3 shows how to schedule

task τ ′ on an example which H = 16. The WCET of τ ′ is

8. There are 4 intervals and ∀k, |Ik| = 4. The values of all

variables are shown in Table I. The column 0 represents the

idle period starting with the execution of b1. Two idle periods

of length 6 and 2 are created in the end of intervals 1 and

3. The variable qk discards the idle period p2 as the first idle

period lasts across intervals 1 and 2.

TABLE I: Example with 4 intervals, τ ′.c = 8.

k 0 1 2 3 4

bk ∗ |Ik| 0 0 2 0 1

ek ∗ |Ik| 0 2 2 1 0

pk 0 6 2 2 0

qk 0 6 0 2 0

Fig. 3: Schedule of τ ′ from Table I.

t
0 4 8 12 16

e
1

b
2

e
2

e
3
b
4

I
1

I
2

I
3

I
4

To know which low-power state is used on each idle period,

let LPs,k be a binary variable. LPs,k = 1 if the low-power

state s is activated during the idle period starting in the end

of interval k and LPs,k = 0 otherwise. Each idle period must

activate a low-power state, thus:

∀k,
∑

s

LPs,k =

{

0 if qk = 0

1 otherwise
(5)

A low-power state cannot be activated if the idle period is

smaller than the BET. Thus this additional constraint:

∀k, ∀s, LPs,k = 0 if qk ≤ BETs (6)

The consumption while in low-power state s is Es and the

penalty consumption required to come back to the active state

is Pens. Thus the consumption Pk of each idle period starting

at the end of interval k is:

Pk =
∑

s

LPs,k(Es × qk + Pens) (7)

Minimizing the static consumption means minimizing on

each interval the consumption of the idle task and also the

consumption of all tasks. Thus the final objective function of

the mixed integer linear program is:

Minimize
∑

k

(Pk +
∑

j∈Jk

wj,k × |Ik|) (8)

IV. LPDPM-MC: HANDLE LOW-CRITICALITY TASKS

In this section, we take advantage of the ability of the low-

criticality tasks to tolerate some deadline misses in order to

further reduce the energy consumption.

A. Offline

Offline, the idea is to provision only a percentage of the

WCET of each low-criticality task. The sum of all weights

for each low-criticality job is no longer equal to the WCET

of the job. Let tj be this difference:

tj = j.c−
∑

Ej

wj,k (9)

A low-criticality job will suffer a deadline miss if its

execution time is larger than the j.c − tj . If a low-criticality

job does not finish its execution before its deadline, the job is

dropped. In the linear program, the low-criticality jobs are no

longer constrained to Equation (3) but to equation:

∀j, α× j.c ≤
∑

k∈Ej

wj,k × |Ik| ≤ j.c (10)

Note that α only represents the minimal percentage of

the execution time which has to be reserved for each low-

criticality task. It can therefore be higher than α × WCET .

However, using α × WCET for all the low-criticality jobs

gives the lowest consumption.

The execution times of the low-criticality jobs are reduced,

thus the execution time of τ ′ must also be increased to keep

the global utilization equal to the number of processors. Thus,

instead of Equation (3), τ ′ is now constrained to:
∑

k

wτ ′,k × |Ik| ≤ H (11)

Note that under these circumstances, the utilization of τ ′

can be up to 1, i.e. its execution time equals to the hyper-

period. However, requiring the utilization of τ ′ to be no more

than 1 bounds the reduction of the provisioned execution time

that can be set using α for the low-criticality tasks. Thus, the

reduction of the energy consumption is also bounded due to

the following constraint:

UHI + α× ULO ≥ m− 1 (12)

To be more energy efficient, we get around this constraint

by removing one processor from the system when m − 2 <

UHI + α× ULO < m− 1. The utilization of τ ′ therefore stays

lower than 1 and all the computations are then done on m−1
processors, including online scheduling. A processor is thus

always in a lower-power mode with a consumption equals

to zero but with an increasing risk of deadline misses. This

process can be repeated to remove more processors if needed.

B. Online

Online, tasks may not use their WCET but their AET

instead. It thus releases idle time, called slack time. This leads

to the creation of lots of small idle periods which cannot be

used to activate energy efficient low-power states. Instead, our

online algorithm uses this slack time to schedule the low-

criticality tasks. They get more execution time and are less

likely to miss their deadlines. tj is used to know if a low-

criticality task can be executed based on the current amount

of available slack time.

When a processor has no task to execute, our scheduling

algorithm triggers the following actions in this order:

1) If the weight of τ ′ in the current interval can be

increased (i.e. its remaining execution time is less than

the remaining time in the interval), the slack time is

given to τ ′ to increase the current idle period.

2) Else the slack time is used to execute available low-

criticality jobs with tj > 0. To keep the implementation

simple, the job with the smallest index is chosen. tj is

then updated while executing the job and the job ends

its execution when tj = 0. Note that a job cannot be

selected if it is already executing on another processor.

3) Else a low-power state is activated (if compatible with

BET constraints) according to the length of the forth-

coming idle period.

This solution is aggressive because it gives a higher priority

to the idle task instead of the low-criticality tasks to further re-

duce the energy consumption. Note that the slack time created

inside an interval is only used to extend the execution time of

the low-criticality tasks of the given interval. An alternative

strategy would anticipate the execution of the weights of

current low-criticality tasks in the following intervals.

Figure 4 illustrates the possible scenarios with 3 tasks

scheduled on 2 processors. We assume α = 0.5. Their

criticality, WCET and period respectively are (high, 7, 12),

(low, 8, 12) and (low, 2, 4). The AET of τ1 and τ2 respectively

are 4 and 7. And the AET of the three jobs of τ3 respectively

are 1, 2 and 1. The execution times of the task set are shown

in Table II. The first column of τj are the reserved execution

times, based on the weights of each job computed by the

linear program for each interval. The total reserved execution

time is 7 for τ2 and respectively 1, 2 and 1 for the 3 jobs of

τ3. As expected these values are not less than α × WCET .

The second column are the execution times consumed by the

task when it uses its AET. If a job does not consume all its

reserved execution time in an interval, its execution time on

all subsequent intervals of the job is 0. τ ′b and τ ′e are the two

subtasks of τ ′ respectively executed at the beginning and at

the end of the interval.

TABLE II: Execution times of the task set in Figure 4.

τ ′
b

τ ′e τ1 τ2 τ3
I1 1 0 3 3 3 3 1 1

I2 0 2 2 1 2 2 2 2

I3 2 2 2 0 1 1 1 1

Fig. 4: Offline (1.cx) and online (2.cx) schedule on 2 cores.

1.c
1

t

1.c
2

t

2.c
1

t

2.c
2

t
0 4 8 12

τ' τ
1

τ
2

τ
3

τ
1

τ'

τ
2

τ
3

τ'

τ
1

τ
2

τ
3

τ' τ
1

τ
2

τ
3

τ
1

τ'

τ
2

τ
3

τ'

τ
2

τ
3

τ
2

I
1

I
2

I
3

In the first two lines of Figure 4, tasks use their WCET. Thus

τ2 misses its deadline, while τ3 misses its deadline in its first

and third jobs. In the last 2 lines, tasks use their AET. Thus in

t = 5, when τ1 ends its execution, the slack time is given to

τ ′. τ1 finishes its execution in I2 and is thus not executed in

I3. τ2 and τ3 use their reserved execution time until t = 10,

therefore τ3 finishes. Then the slack time is given to τ2 to

finish its execution because τ ′ is already executed on the first

processor. And at t = 11, there is no other solution than trying

to activate a low-power state if the idle period is large enough.

No deadlines is thus missed for this scenario.

V. EVALUATION

We use a simulator to generate random task sets, with

a global utilization set between 3 and 4. Each task set is

scheduled on 4 processors and includes 3 high-criticality tasks

and 7 low-criticality tasks. For each task set, the utilization

of both high and low-criticality tasks is computed randomly

between 0.01 and 0.99 with a uniform distribution using the

UUniFast-Discard algorithm from Davis and Burns [11]. The

period of each task is also chosen randomly between 10ms

and 100ms with a uniform distribution. The task sets with

a hyper-period larger than 10s are rejected to remain in a

realistic bound of typical industrial systems. We allowed 5

minutes to IBM ILOG CPLEX to solve the linear program,

which was enough to get a solution.

For each utilization value, 500 random task sets are gener-

ated and scheduled by two global multiprocessor schedulers:

LPDPM-MC and LPDPM [15]. We are not aware of any

power-aware MC scheduling algorithm which could be used

as a reference. For the simulation, we assume that the high-

criticality tasks use their WCET. Four different values of α

are used for LPDPM-MC: 0.2, 0.4, 0.6 and 0.8. Setting α to

0.2 and 0.4 is more aggressive because the probabilities for

the actual execution time to be less than 0.2 × WCET and

0.4×WCET are respectively only 20% and 60%. The other

values are more conservative because this percentage grows

respectively up to 85% and 96%.

Table III describes the characteristics of the low-power

states we consider in our simulations. The definition of these

three states as well as their energy consumption and their

transition delay is based on an analysis of the hardware

capabilities of the STM32L [2] and the MPC551x [1].

Figure 5 plots the mean global energy consumption of

LPDPM-MC for each value of α. All consumptions are relative

to the consumption of LPDPM, which is therefore always 1. It

TABLE III: Low-power states used for the simulation.

State Energy consumption Transition delay (ms)

Run 1

Sleep 0.5 0.1

Stop 0.1 2

Standby 0.00001 10

Fig. 5: Global energy consumption with 4 values of α.

3.0 3.2 3.4 3.6 3.8 4.0
Global utilization

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

E
n
e
rg

y
 c

o
n
su

m
p
ti

o
n
 (

LP
D

P
M

 =
 1

)

LPDPM-MC (0.8)
LPDPM-MC (0.6)
LPDPM-MC (0.4)
LPDPM-MC (0.2)

includes the consumption while processors are idle and while

executing the low-criticality tasks. But it does not include the

consumption while executing the high-criticality tasks which

is identical for all the schedulers. LPDPM-MC with α = 0.2
is the most efficient scheduler with an energy consumption

reduction up to 35%. When α grows, the energy efficiency of

the scheduler is reduced but is still 17% for α = 0.4 and up

to 10% for α = 0.6. The energy consumption improvement is

almost null for α = 0.8.

We also computed the deadline miss ratio, i.e. the ratio

between the number of deadline misses and the total number of

jobs for low-criticality tasks only. The highest ratio of deadline

misses, from 10% up to 28%, is obtained when α = 0.2. As

expected, when α increases, the deadline miss ratio decreases.

The ratio is between 2% and 5% when α = 0.4 and goes

below 2% when α > 0.4. Based on these results, choosing

α = 0.4 seems appropriate to significantly reduce the energy

consumption while keeping a low ratio of deadline misses.

VI. CONCLUSION

This paper introduces LPDPM-MC, a multiprocessor real-

time scheduling algorithm to reduce the energy consumption

of mixed-critical systems. Offline, it only reserves a percentage

of the WCET of the low-criticality tasks. The slack time

generated online by tasks is then used to reduce the ratio

of deadline miss for these low-criticality tasks. The designer

can control the aggressiveness of the solution depending on

whether the focus should be on reducing the energy con-

sumption or the deadline misses. Results show that LPDPM-

MC can be 17% more energy efficient than the non mixed-

critical aware scheduling algorithms using the same approach,

while the deadline miss ratio is lower than 4%. Higher energy

efficiency is achievable but with higher deadline miss ratios.

In a future work, we would like to evaluate the tradeoff

given by LPDPM-MC when using others distributions for the

AET of tasks. To be more flexible, it would be interesting

to allow different values of α, one for each task. Another

idea would be to fix as an objective the energy consumption

reduction compared to LPDPM. The output will then be the

largest possible value of α for the low-criticality tasks fulfilling

this objective. Finally, we plan to integrate conditions to better

take advantage of the low-power states that must be activated

on all processors simultaneously.

REFERENCES

[1] FreeScale MPC5510 Microcontroller Family Reference Manual.
[2] ST Microelectronics STM32L151xx and STM32L152xx advanced ARM-

based 32-bit MCUs Reference Manual.
[3] T. Austin, D. Blaauw, S. Mahlke, T. Mudge, C. Chakrabarti, and

W. Wolf. Mobile supercomputers. Computer, 37(5):81–83, May 2004.
[4] M. Awan and S. Petters. Energy aware partitioning of tasks onto a

heterogeneous multi-core platform. In Proc. of the 19th IEEE Real-

Time and Embedded Technology and Applications Symp., 2013.
[5] S. K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-

Spaccamela, N. Megow, and L. Stougie. Scheduling real-time mixed-
criticality jobs. In Proc. of the 35th Int. Conf. on Mathematical

foundations of computer science, pages 90–101, 2010.
[6] S. K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for

mixed criticality systems. In Proc. of the IEEE 32nd Real-Time Systems

Symp., pages 34–43, 2011.
[7] M. Bhatti, M. Farooq, C. Belleudy, and M. Auguin. Controlling energy

profile of rt multiprocessor systems by anticipating workload at runtime.
In Proc. of SYMPosium en Architectures nouvelles de machines, 2009.

[8] A. Burns and R. Davis. Mixed criticality systems - a review, 2013.
[9] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega,

L. Kosmidis, J. Abella, E. Mezzetti, E. Quinones, and F. Cazorla.
Measurement-based probabilistic timing analysis for multi-path pro-
grams. In Proc. of the 24th Euromicro Conf. on Real-Time Systems,
pages 91–101, 2012.

[10] R. Davis and A. Burns. Fpzl schedulability analysis. In Proc. of the 17th

IEEE Real-Time and Embedded Technology and Applications Symp.,
pages 245 –256, 2011.

[11] R. I. Davis and A. Burns. Improved priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems.
Real-Time Systems, 47(1):1–40, Jan. 2011.

[12] H. Huang, F. Xia, J. Wang, S. Lei, and G. Wu. Leakage-aware
reallocation for periodic real-time tasks on multicore processors. In Proc.

of the 5th Int. Conf. on Frontier of Computer Science and Technology,
pages 85–91, 2010.

[13] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and G. C. Buttazzo. Ap-
plying real-time interface and calculus for dynamic power management
in hard real-time systems. Real-Time Systems, 47, March 2011.

[14] E. Le Sueur and G. Heiser. Dynamic voltage and frequency scaling:
The laws of diminishing returns. In Proc. of the Work. on Power Aware

Computing and Systems, pages 1–8, 2010.
[15] V. Legout, M. Jan, and L. Pautet. An off-line multiprocessor real-time

scheduling algorithm to reduce static energy consumption. In Proc. of

the 1st Work. on Highly-Reliable Power-Efficient Embedded Designs,
2013.

[16] M. Lemerre, V. David, C. Aussaguès, and G. Vidal-Naquet. Equivalence
between schedule representations: Theory and applications. In Proc. of

the IEEE Real-Time and Embedded Technology and Applications Symp.,
pages 237–247, 2008.

[17] H. Li and S. Baruah. Global mixed-criticality scheduling on multipro-
cessors. In Proc. of the 24th Euromicro Conf. on Real-Time Systems,
pages 166–175, 2012.

[18] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and J. A.
Scoredos. Mixed-criticality real-time scheduling for multicore systems.
In Proc. of the 10th IEEE Int. Conf. on Computer and Information

Technology, pages 1864–1871, 2010.
[19] S. Vestal. Preemptive scheduling of multi-criticality systems with

varying degrees of execution time assurance. In Proc. of the 28th IEEE

Int. Real-Time Systems Symp., pages 239–243, 2007.

