Inferring Leadership from Group Dynamics Using Markov Chain Monte Carlo Methods

Abstract : This chapter presents a novel framework for identifying and tracking dominant agents in groups. The proposed approach relies on a causality detection scheme that is capable of ranking agents with respect to their contribution in recognizing the system's collective behavior based exclusively on the agents' observed trajectories. Further, the reasoning paradigm is made robust to multiple emissions and clutter by employing a class of recently introduced Markov chain Monte Carlo-based group tracking methods. Examples are provided that demonstrate the strong potential of the proposed scheme in identifying actual leaders in swarms of interacting agents and moving crowds.
Type de document :
Chapitre d'ouvrage
Modeling, Simulation and Visual Analysis of Crowds: A Multidisciplinary Perspective, Eds S. Ali, K. Nishino, D. Manocha, M. Shah - Springer, pp.325-346, 2013, The International Series in Video Computing Volume 11, 978-1461484820
Liste complète des métadonnées

https://hal-imt.archives-ouvertes.fr/hal-00937296
Contributeur : François Septier <>
Soumis le : mardi 28 janvier 2014 - 10:52:53
Dernière modification le : jeudi 11 janvier 2018 - 06:26:40

Identifiants

  • HAL Id : hal-00937296, version 1

Collections

Citation

Avishy Carmi, Lyudmila Mihaylova, François Septier, Sze Kim Pang, Pini Gurfil, et al.. Inferring Leadership from Group Dynamics Using Markov Chain Monte Carlo Methods. Modeling, Simulation and Visual Analysis of Crowds: A Multidisciplinary Perspective, Eds S. Ali, K. Nishino, D. Manocha, M. Shah - Springer, pp.325-346, 2013, The International Series in Video Computing Volume 11, 978-1461484820. 〈hal-00937296〉

Partager

Métriques

Consultations de la notice

92