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Rigidity Theory in SE(2) for Unscaled Relative

Position Estimation using only Bearing Measurements

Daniel Zelazo, Antonio Franchi, Paolo Robuffo Giordano

Abstract— This work considers the problem of estimating the
unscaled relative positions of a multi-robot team in a common
reference frame from bearing-only measurements. Each robot
has access to a relative bearing measurement taken from the
local body frame of the robot, and the robots have no knowledge
of a common reference frame. An extension of rigidity theory is
made for frameworks embedded in the special Euclidean group
SE(2) = R

2 ×S1. We introduce definitions describing rigidity
for SE(2) frameworks and provide necessary and sufficient
conditions for when such a framework is infinitesimally rigid in
SE(2). We then introduce the directed bearing rigidity matrix
and show that an SE(2) framework is infinitesimally rigid if
and only if the rank of this matrix is equal to 2|V| − 4, where
|V| is the number of agents in the ensemble. The directed
bearing rigidity matrix and its properties are then used in
the implementation and convergence proof of a distributed
estimator to determine the unscaled relative positions in a
common frame. Simulation results are given to support the
analysis.

I. INTRODUCTION

Control and estimation problems for teams of mobile

robots pose many challenges for real-world implementations.

These problems are motivated by diverse application domains

including deep space interferometry missions, distributed

sensing and data collection, and civilian search and rescue

operations, amongst others [1]–[4]. Many of these applica-

tions involve operating a robot team in environments where

access to certain measurements in a common reference

frame (i.e., inertial position measurements from GPS) are

not available. This motivates control and estimation strategies

that rely on sensing and communication capabilities that do

not depend on knowledge of a common reference frame.

When range measurements are available then the theory of

formation rigidity provides the correct framework for consid-

ering formation control problems [5]–[7]. In [8] it was shown

that formation stabilization using distance measurements can

be achieved only if rigidity of the formation is maintained.

Formation rigidity also provides a necessary condition for

estimating relative positions using only relative distance

measurements [9], [10]. Distributed control strategies for

dynamically maintaining the rigidity property of a formation

was recently considered by the authors in [11], [12].

In many real-world scenarios, the sensors used to obtain

relative measurements are likely to be physically coupled
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to the frame of the robot. Furthermore, the sensors might

also introduce additional constraints such as field-of-view

restrictions or line-of-sight requirements. In these scenarios,

the attitude of each agent must be considered to define

the sensing graph. In many distributed control strategies for

multi-robot teams using relative sensing, an implicit require-

ment is the team have knowledge of a common reference

frame to generate the correct velocity input vectors. This

information is either known directly from special sensors or

communication with agents endowed with this information,

or it must be estimated by each agent. This problem was

considered in [13] for special classes of graphs (and extended

to generic graphs using communication) and in [12] when

only distance measurements are available.

This paper considers the unscaled relative position (URP)

estimation problem for a team of agents that have access to

bearing measurements. The adjective ‘unscaled’ means that

the positions of the agents are estimated up to a common

scale factor. The bearing sensor is attached to the body

frame of each agent, and consequently the attitude of each

agent (as measured from a common inertial frame) will

influence which agents can be sensed. In this direction,

we consider each agent as a point in SE(2)1 The bearing

measurements available for each agent induces a directed

sensing graph. A contribution of this work is to provide

necessary and sufficient conditions on the underlying sensing

graph and positions of each agent in SE(2) for solving the

URP relative position estimation problem with only bearing

measurements.

Estimation using only relative bearings as exteroceptive

measurements has been considered also in [14], [15]. How-

ever, in those works the robots also had access to egomotion

sensors in order to disambiguate the anonymity of the mea-

surements, an assumption not required in this work. Another

similar problem set-up was also considered in [16]–[18]. The

main distinction with this work is the insistence that the

bearing measurements between agents are expressed in the

local frame of the agent. This turns out to be an important

assumption and requires a new extension to the theory of

rigidity. These works are related to the notion of parallel

rigidity which attempts to keep the bearing vector between

neighboring agents constant (i.e., the formation shape). Other

references utilising parallel rigidity include [2], [13], [19],

[20].

This then motivates the study of rigidity for formations in

SE(2), which is the main contribution of this work. Similar

to parallel rigidity, the objective for formations in SE(2)

1It has a position coordinate in R
2 and an attitude on the 1-dimensional

manifold on the unit circle, S1.
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is to define a formation shape while also maintaing the

relative bearings between each agent. The main distinction is

the bearing measurements are expressed in the local frame

of each agent, and the corresponding statements on SE(2)
rigidity explicitly handle this distinction. Our approach is to

mirror the development of formation rigidity, such as can be

found in [21], but for frameworks where each node in the

directed graph is mapped to a point in SE(2). We derive a

matrix we term the directed bearing rigidity matrix and show

that a formation is infinitesimally rigid in SE(2) if and only

if the dimension of the kernel of this matrix is equal to four.

Furthermore, we show the infinitesimal motions that span

the kernel are the trivial motions of a formation in SE(2),
namely the translations, dilations, and coordinated rotations

of the formation. The directed bearing rigidity matrix appears

in the relative position estimator and provides the essential

ingredient for the convergence proof of the estimator.

The paper is organized as follows. A brief review of

concepts from rigidity theory with an emphasis on parallel

rigidity is provided in §II. The development of rigidity theory

for SE(2) is given in §III. The relative position estimation

problem is given in §IV, and some numerical simulation

examples are given in §V. Finally, concluding remarks and

future research directions are discussed in §VI.

Preliminaries and Notations: The set of real numbers

will be denoted as R, the 1-dimensional manifold on the unit

circle as S1, and SE(2) = R
2×S1 is the Special Euclidean

Group 2. The standard Euclidean 2-norm for vectors is

denoted ‖ . ‖. Directed graphs and the matrices associated

with them will be widely used in this work; see, e.g., [22].

A directed graph G is specified by a vertex set V , an edge

set E ⊆ V × VThe neighborhood of the vertex i is the set

Ni = {j ∈ V | (i, j) ∈ E}, and the out-degree of vertex i

is dout(i) = |Ni|. The incidence matrix E(G) ∈ R
|V|×|E|

is a {0,±1}-matrix with rows and columns indexed by the

vertices and edges of G [22].The complete directed graph,

denoted K|V| is a graph with all possible directed edges (i.e.

|E| = |V| (|V| − 1)). The graph Laplacian of the matrix G is

defined as L(G) = E(G)E(G)T .

II. PARALLEL RIGIDITY THEORY

In this section we briefly review some fundamental con-

cepts of parallel rigidity [17], [23]. For an overview on

distance rigidity theory, please see [21], [24]. Parallel rigidity

is built upon the notion of a bar-and-joint framework,

denoted (G, p), where G = (V, E) is a directed graph and

p : V → R
2 is a function mapping each node of the graph

to a point in Euclidean space. In the following we denote

by p(V) =
[

p(v1)
T · · · p(v|V|)

]

∈ R
2|V| the stacked

position vector for the framework.

Parallel rigidity is concerned with angles formed between

pairs of points and the lines joining them (i.e. the edges

in the graph). These angles are measured with respect to

some common reference frame. Two frameworks are said to

be equivalent if ((p1(vi) − p1(vj))
⊥)T (p2(vi) − p2(vj)) =

0 for all {vi, vj} ∈ E ,2 and congruent if ((p1(vi) −
p1(vj))

⊥)T (p2(vi)− p2(vj)) = 0 for all pairs vi, vj ∈ V .

2The notation x⊥ denotes a π

2
counterclockwise rotation of x.

Observe that for two frameworks to be congruent requires

that the line segment between any pair of nodes in one

framework is parallel to the corresponding segment in the

other framework. Thus, two parallel congruent frameworks

are related by an appropriate sequence of rigid-body trans-

lations and dilations of the framework.

Definition II.1 (Global Rigidity). A framework (G, p) is

parallel globally rigid if all parallel equivalent frameworks

to (G, p) are also parallel congruent to (G, p).

Consider now a trajectory defined by the time-varying

position vector q(t) ∈ R
2|V|. We consider trajectories that

are equivalent to a given framework (G, p) for all time. This

induces a set of linear constraints that can be expressed as

((p(vi)− p(vj))
⊥)T (q̇i(t)− q̇j(t)) = 0 (1)

for all {vi, vj} ∈ E . Here we employed a short-hand notation

qi(t) to denote the position of node vi in the time-varying

framework (G, q(t)). The velocities q̇(t) that satisfy the

above constraints are referred to as the infinitesimal motions

of a framework. Frameworks with infinitesimal motions that

satisfy (1) and result in only rigid-body translations and

dilations are known as infinitesimally rigid.

The |E| linear constraints given in (1) can be equivalently

written in matrix form as

R‖,G(p(V))q̇(t) = 0. (2)

The matrix R‖,G(p(V)) ∈ R
|E| × 2|V| is referred to as the

parallel rigidity matrix. The null-space of these matrices thus

describe the infinitesimal motions. The main result of this

section is summarized below.

Theorem II.2. A framework (G, p) is parallel infinitesimally

rigid if and only if rk[R‖,G(p(V))] = 2|V|−3. Furthermore,

the three dimensional null-space of the parallel rigidity ma-

trix are correspond to rigid-body translations and dilations

of the framework.

III. RIGIDITY IN SE(2)

The concepts of distance and parallel rigidity introduced

in §II provides a framework for describing formation shapes

in R
2. In this section, we extend these notions of rigidity

for frameworks that are embedded SE(2). Our discussion

follows closely the presentation of rigidity given in [21],

[25]. To begin, we first modify the traditional bar-and-joint

framework to handle points in SE(2).

Definition III.1. An SE(2) framework is the triple (G, p, ψ),
where G = (V, E) is a directed graph, p : V → R

2 and ψ :
V → S1 maps each vertex to a point in SE(2) = R

2 × S1.

We denote by χ(v) = (p(v), ψ(v)) ∈ SE(2) the position

and attitude vector of node v ∈ V . For notational conve-

nience, we will refer to the vectors χp = p(V) ∈ R
2|V| and

χψ = ψ(V) ∈ S1|V|
as the position and attitude components

of the complete framework configuration. The vector χ(V) ∈
SE(2)|V| is the stacked position and attitude vector for the

complete framework. We also denote by χxp ∈ R
|V| (χyp)

as the x-coordinate (y-coordinate) vector for the framework

configuration.



The defining feature of rigidity in SE(2) is the specifica-

tion of formations that maintain the relative bearing angle

between points in the framework with respect to the local

frame of each point. This is motivated by scenarios where a

robot in a multi-robot team is able to measure the relative

bearing between itself and other robots. The explicit use

of directed graphs in the definition of SE(2) frameworks

reinforces this motivation when considering that relative

bearing sensors are likely to be attached to the body frame

of the robots, and will have certain constraints such as field-

of-view restrictions that may exclude certain measurements,

and in particular, bidirectional or symmetric measurements.
In this venue, we assume that a point χ(v) ∈ SE(2) has

a bearing measurement of the point χ(u) if and only if the

directed edge (v, u) belongs to the graph G (i.e., (v, u) ∈ E);

this measurement is denoted βvu ∈ S1. The relative bearing

is measured from the body coordinate system of that point.
We define the directed bearing rigidity function associated

with the SE(2) framework, bG : SE(2)|V| → S1|E|, as

bG(χ(V)) =
[

βe1 · · · βe|E|

]T
; (3)

we use the notation ei ∈ E to represent a directed edge in

the graph and assume a labeling of the edges in G.
The bearing measurement can be equivalently written as

a unit vector pointing from the body coordinate of the point

χ(v) to the point χ(u), i.e.,

rvu(p, ψ) =

[

rxvu
ryvu

]

=

[

cos(βvu)
sin(βvu)

]

, (4)

which also satisfies the relationship βvu = atan
(

ryvu
rxvu

)

.

Observe, therefore, that the bearing measurement can be

expressed directly in terms of the relative positions and

attitudes of the points expressed in the world frame,

rvu(p, ψ) =

[

cos(ψ(v)) sin(ψ(v))
− sin(ψ(v)) cos(ψ(v))

]

(p(u)− p(v))

‖p(v)− p(u)‖

= T (ψ(v))T
(p(u)− p(v))

‖p(v)− p(u)‖
= T (ψ(v))T pvu,

where the matrix T (ψ(v)) is a rotation matrix from the

world frame to the body frame of agent v, and pvu is a

shorthand notation for describing the normalized relative

position vector from v to u.
We now introduce formal definitions for rigidity in SE(2),

and for the notions of equivalent and congruent formations

in SE(2) frameworks.

Definition III.2 (Rigidity in SE(2)). The SE(2) framework

(G, p, ψ) is rigid in SE(2) if there exists a neighborhood S
of χ(V) ∈ SE(2)|V| such that

b−1
K|V|

(bK|V|
(χ(V))) ∩ S = b−1

G (bG(χ(V))) ∩ S,

where b−1
K|V|

(bK|V|
(χ(V))) ⊂ SE(2) denotes the pre-image

of the point bK|V|
(χ(V)) under the directed bearing rigidity

map.

The SE(2) framework (G, p, ψ) is roto-flexible in SE(2)
if there exists an analytic path η : [0, 1] → SE(2)|V| such

that η(0) = χ(V) and

η(t) ∈ b−1
G (bG(χ(V)))− b−1

K|V|
(bK|V|

(χ(V)))

for all t ∈ (0, 1].

This definition states that an SE(2) framework (G, p, ψ)
is rigid if and only if for any point q ∈ SE(2) sufficiently

close to χ(V) with bG(χ(V)) = bG(q), that there exists a

local bearing preserving map of SE(2) taking χ(V) to q.

The term roto-flexible is used to emphasize that an analytic

path in SE(2) can consist of motions in the plane in addition

to angular rotations about the body axis of each point.

Definition III.3 (Equivalent and Congruent SE(2) Frameworks).

Frameworks (G, p, ψ) and (G, q, φ) are bearing equivalent if

T (ψ(u))T puv = T (φ(u))T quv, (5)

for all (u, v) ∈ E and are bearing congruent if

T (ψ(u))T puv = T (φ(u))T quv and

T (ψ(v))T pvu = T (φ(v))T qvu,

for all u, v ∈ V .

Definition III.4 (Global rigidity of SE(2) Frameworks). A

framework (G, p, ψ) is globally rigid in SE(2) if every

framework which is bearing equivalent to (G, p, ψ) is also

bearing congruent to (G, p, ψ).

Parallel rigidity is built on frameworks where the underly-

ing graph is undirected. On the other side rigidity in SE(2)
is explicitly defined for directed graphs. We now define

a corresponding notion of infinitesimal rigidity for SE(2)
frameworks. Using the language introduced in Definition

III.2, we consider a smooth motion along the path η with

η(0) = χ(V) such that the initial rate of change of the

directed bearing rigidity function is zero. All such paths

satisfying this property are the infinitesimal motions of the

SE(2) framework, and are characterized by the null-space

of the Jacobian of the directed bearing rigidity function,

∇χbG(χ(V)), as can be seen by examining the first-order

Taylor expansion of the directed bearing rigidity function.

In this venue, we introduce the directed bearing rigidity

matrix, BG(χ(V)) as the Jacobian of the directed bearing

rigidity function,

BG(χ(V)) := ∇χbG(χ(V)) ∈ R
|E|×3|V|. (6)

If a path η is contained entirely in b−1
K|V|

(bK|V|
(χ(V))) for

all t ∈ [0, 1], then the infinitesimal motions are entirely

described by the tangent space to b−1
K|V|

(bK|V|
(χ(V))), that

we denote by Tp. Furthermore, the space Tp must therefore

be a subspace of the kernel of the directed bearing rigidity

matrix for any other graph G, i.e. Tp ⊆ N [BG(χ(V))]; this

follows from the definition of roto-flexible frameworks given

in Definition III.2. This leads us to a formal definition for

infinitesimal rigidity of frameworks in SE(2).

Definition III.5 (Infinitesimal Rigidity in SE(2)). An

SE(2) framework (G, p, ψ) is infinitesimally rigid if

N [BG(χ(V))] = N
[

BK|V|
(χ(V))

]

. Otherwise, it is in-

finitesimally roto-flexible in SE(2).

Definition III.5 leads to the main result of this section

which relates the infinitesimal rigidity of an SE(2) frame-

work to the rank of the directed bearing rigidity matrix.



Theorem III.6. An SE(2) framework is infinitesimally rigid

if and only if rk[BG(χ(V))] = 3|V| − 4.

Before proceeding with the proof of Theorem III.6, we

first examine certain structural properties of N [BG(χ(V))].
First, we observe that the infinitesimal motions of an SE(2)
framework are composed of motions in R

2 with motions

in S1 for each point. For an infinitesimal motion δχ ∈
N [BG(χ(V))], let δχp denote the velocity component of δχ

in R
2|V| and δχψ be the angular velocity component in R

|V|.

Proposition III.7. Every infinitesimal motion δχ ∈
N [BG(χ(V))] satisfies R‖,G(χp)δχp = −Rψ(χp)δχψ ,

where R‖,G(χp) is the parallel rigidity matrix3 defined

in (2) and Rψ(χp) = DG(χp)E
T
(G) with DG(χp) =

diag{ℓ2e1 , · · · , ℓ
2
e|E|

} a diagonal matrix containing the dis-

tances squared between all pairs of nodes defined by the

edge-set E , and the matrix E ∈ R
|V|×|E| is defined as

[E(G)]ik =

{

1, if ek = (vi, vj) ∈ E
0, o.w.

.

Proof. The result in Proposition III.7 is obtained directly

from the evaluation of the Jacobian of the directed bearing

rigidity function.

The first observation from Proposition III.7 is the re-

lationship between the infinitesimal motions of an SE(2)
framework and those of a parallel rigid framework. Indeed, if

all agents maintain their attitude, i.e. when δχψ = 0, then the

constraint reduces to the constraints for parallel rigidity. The

corresponding infinitesimal motions are then the translations

and dilations of the framework.
If the angular velocities of the agents are non-zero, then

the infinitesimal motions of the framework correspond to

what we term the coordinated rotations of the framework. A

coordinated rotation consists of an angular rotation of each

agent about its own body axis with a rigid-body rotation of

the framework in R
2. The coordinated rotations that satisfy

Proposition III.7 are thus related to the subspace

R�(G) = IM
{

R‖,G(χp)
}

∩ IM {−Rψ(χp)} ⊂ R
|E|,

that we term the coordinated rotation subspace. Formally,

the coordinated rotations can be constructed as

δ̂χp ∈ R−1
‖,G [R�(G)], and δ̂χψ = −R†

ψ(χp)R‖,G(χp)δ̂χp,

where by (A)−1[W ] we mean the pre-image of the set W
under the mapping A, and M† is the left-generalized inverse

of the matrix M .

Proposition III.8. The coordinated rotation subspace is non-

trivial. Equivalently, dimR�(G) ≥ 1.

Proof. We prove this by explicitly constructing a vector in

the coordinated rotation subspace. Consider a rigid-body

rotation of the framework in R
2 described by

zp =

(

I|V| ⊗

[

0 1
−1 0

])

χp.

3The parallel rigidity matrix as shown in Proposition III.7 is slightly dif-
ferent then what was presented in (2). Proposition III.7 explicitly considers
directed graphs, and therefore, a bidirectional edge results in two identical
rows in Proposition III.7, whereas in (2) it is treated as a single edge.

It is a straight-forward exercise to verify that R‖,G(χp)zp =
DG(χp)1|E|. Furthermore, from the construction of E it

follows that E
T

1|V| = 1|E(G)| and therefore R‖,G(χp)zp =

DG(χp)E
T
(G)1|V| concluding the proof.

The proof of Proposition III.8 shows how a coordinated

rotation can be constructed for any SE(2) framework. Each

point in the framework should rotate about its own axis at the

same rate as the rigid-body rotation of the formation. This

can be considered the SE(2) extension of the infinitesimal

motions associated with distance rigidity. Proposition III.8

can now be used to make a stronger statement about the

coordinated rotation subspace for the complete graph.

Proposition III.9. For the complete directed graph K|V|,

dimR�(K|V|) = 1.

Proof. The proof of Proposition III.8 constructs one vec-

tor in the coordinated rotation subspace. Assume that

dimR�(K|V|) > 1. Then there must exist at least one other

coordinated rotation that is orthogonal to the one constructed

in Proposition III.8 and contains a non-trivial angular rotation

of points in the framework. Note that in Proposition III.8

each agent was assigned a unit angular velocity in the same

(counter-clockwise) direction. Thus, any other choice for

angular velocities must either be described by each point

rotating in the same direction, but non-uniform velocities, or

at least two points rotating in opposite directions.

Considering this observation, it is sufficient to see if such a

motion can be constructed for the graph K2. In this situation,

E(K2) = I2 and one can directly conclude from Proposition

III.7 that there can be no additional coordinated rotation then

the one described.

Corollary III.10. An SE(2) framework is infinitesimally

rigid in SE(2) if and only if

1) rk[R‖,G(χp)] = 2|V| − 3 and

2) dim{R�(G)} = 1.

Proof. The statement follows directly from Definition III.5,

Proposition III.7 and Proposition III.8.

We are now ready to prove Theorem III.6.

Proof of Theorem III.6. Assume that rk[BG(χ(V))] =
3|V|− 4. From Propositions III.7 and III.9 we conclude that

rk[BK|V|
(χ(V))] = 3|V|−4. By definition III.5, we conclude

that the SE(2) framework (G, p, ψ) is infinitesimally rigid.

Assume now that the SE(2) framework is infinitesimally

rigid. By corollary III.10, we conclude rk[R‖,G(p(V)] =
2|V| − 3 and dim{R�G} = 1. Therefore, rk[BG(χ(V))] =
3|V| − 4.

While the general structure of the coordinated rotation

subspace can be difficult to characterize for arbitrary graphs,

it does lead to a necessary condition on the underlying graph

of the framework for infinitesimal rigidity.

Proposition III.11. If an SE(2) framework is infinitesimally

rigid, then dout(v) ≥ 1 for all v ∈ V .

Proof. Assume that there exists a node v ∈ V such that

dout(v) = 0. Then a solution to the expression in Proposition



III.7 is δχp = 0 and [δχψ]i = 1 if i corresponds to node v
and 0 otherwise. This motion does not belong to the subspace

Tp and therefore rk[BG(χ(V))] > 3|V|−4 and the framework

is not infinitesimally rigid.

IV. ESTIMATION OF RELATIVE POSITIONS

Achieving high-level objectives such as formations for

multi-robot systems require that all robots have knowledge

of a common reference frame. This is to ensure that their

velocity inputs vectors are all consistent when maneuvering

to achieve the common formation task. However, often the

sensed data that is available, such as a relative bearing

measurement, is measured from the local body frame of each

agent. Furthermore, agents do not have access to a global

coordinate system. A requirement for multi-robot systems,

therefore, is the ability to estimate a common reference frame

in order to express to relative position information. This

section describes how the results from §III can be used to

distributedley estimate a common reference frame from only

the relative bearing measurements.

In this direction, we consider an infinitesimally rigid

SE(2) framework (G, p, ψ). We assume that there are two

points in the framework whose Euclidean distance is un-

known but positive and constant; these points are indexed as

ι and κ (i.e., the position of agent ι is p(ι)). Denote with

ξ̂ιi ∈ R
2 the estimate of the quantity

ξιi = T (ψ(ι))T
p(i)− p(ι)

‖p(ι)− p(κ)‖
(7)

i.e., the relative position (expressed in the body frame of

agent ι) of a virtual point that is on the line connecting

agent ι and a generic agent i and whose distance from ι is
‖p(i)−p(ι)‖
‖p(ι)−p(κ)‖ . Denote then with ϑ̂i ∈ S1 the estimate of the

angle ϑ(i) defined by

T (ϑ(i)) = T (ψ(i))TT (ψ(ι)), (8)

whose role will be clear in the following. Define then the

following quantities:

ξ̂ij = ξ̂ιj − ξ̂ιi, r̂ij = T (ϑ̂i)
ξ̂ij

‖ξ̂ij‖
, β̂ij = atan2(r̂yij , r̂

x
ij). (9)

Thus the quantity ξ̂ij is an estimate of the relative position

vector from i to j, scaled by the quantity ‖p(ι) − p(κ)‖,

and expressed in a common reference frame whose origin is

p(ι) and orientation is ψ(ι). Notice that ξ̂ij represents an

unscaled estimate (in the sense explained in the Introduction)

of the actual relative position between the agents. Similarly,

the estimate of the attitude of the point i can be obtained

from (8).

The important fact is that if ϑ̂(i) = ϑ(i) and ξ̂ιi is equal

to (7) we obtain (using also (8)) that

r̂ij = T (ϑ(i))T (ψ(ι))T
p(i)− p(j)

‖p(i)− p(j)‖

= T (ψ(i))T
p(i)− p(j)

‖p(i)− p(j)‖
= rij ,

which justifies the fact that r̂ij and β̂ij represent our

estimates of rij(p, ψ), and βij , respectively, defined in (4).

Our goal can be then recast as the design of an estimator

that is able to compute ξ̂ιi and ϑ̂(i) for all i = 1 . . . |V| using

the bearing measurements that corresponds to each directed

edge of E . In order to do so we consider the following

estimation error:

e(ξ̂, ϑ̂, p, ψ) = bG(χ(V))− b̂G(ξ̂, ϑ̂) (10)

where b̂G(ξ̂, ϑ̂) ∈ R
|E| is the vector of estimated relative

bearings obtained from (9). The objective of the estimation
algorithm can be then stated as the minimization of the
following scalar function

J(e) =
1

2

(

ke‖e(ξ̂, ϑ̂, p, ψ)‖
2 + k1‖ξ̂ιι‖

2 + k2(‖ξ̂ικ‖
2 − 1)2+

k3(1− cos ϑ̂(ι))
)

, (11)

where the nonnegative terms k1‖ξ̂ιι‖
2, k2(‖ξ̂ικ‖

2− 1)2 and

k3(1− cosϑ(ι)) account for the fact that at steady state the

estimator should let ξ̂ιι converge to 0, ‖ξ̂ικ‖ converge to 1,

and ϑ̂(ι) converge to 0. The positive gains ke, k1, k2, and k3
are introduced here to tune the priority of the single error

components within the overall error.

Minimization of (11) can be achieved by following the

antigradient of J(e), i.e., by choosing:
[

˙̂
ξ
˙̂
ϑ

]

= −ke (∇(ξ̂,ϑ̂)e)
T
e− g(ξ̂, ϑ̂) (12)

where

g(ξ̂, ϑ̂) =
[

· · · k1 ξ̂ι · · · k2(ξ̂
T

κ ξ̂κ − 1)ξ̂κ · · · k3 sin ϑ̂(ι) · · ·
]T
,

and the terms k1ξ̂ιι, k2(ξ̂
T
ικξ̂ικ−1)ξ̂ικ, and k3 sin ϑ̂(ι) appear

at the ι-th and κ-th entry pairs of
˙̂
ξ and ι-th entry of

˙̂
ϑ,

respectively, and all the other terms are zero.

As a matter of fact, considering that bG(χ(V)) is constant,

the Jacobian of e(ξ̂, ϑ̂, p, ψ) can be expressed in terms of the

directed bearing rigidity matrix as

∇(ξ̂,ϑ̂)e = −
[

D−1
G (ξ̂)R‖,G(ξ̂) E(G)T

]

. (13)

Note that the form above is consistent with Proposition III.7,

which can be obtained from the directed bearing rigidity

matrix using an appropriate permutation matrix.

Proposition IV.1. If the framework (G, p, ψ) is (infinitesi-
mally) rigid in SE(2) then the vector of true values

[

T (ψ(ι))
p(1) − p(ι)

‖p(ι) − p(κ)‖

T

· · · T (ψ(ι))
p(|V|) − p(ι)

‖p(ι) − p(κ)‖

T

ϑ(1) . . . ϑ(|V|)

]T

is an isolated local minimizer of e. Therefore, there exists an

ǫ > 0 such that, for all initial conditions (ξ̂T0 , ϑ̂0)
T whose

distance from the true values is less than ǫ, the estimation ξ̂
and ϑ̂ converge to the true values.

Proof. If the framework is infinitesimally rigid in SE(2),
then in any sufficiently small neighborhood of the true bear-

ing values, the only configurations that result ‖e(ξ̂, ϑ̂, p, ψ)‖2

being zero in (11) are the trivial motions of the true values

(i.e. the rigid-body translations, dilations, and coordinated

rotations). For the true values the remaining terms of (11)

are zero and therefore is J(e) = 0. If any non-zero trivial

motion is applied to the true values then at least one of the
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Fig. 1. Simulation with an SE(2) infinitesimally rigid framework.

remaining terms in J(e) becomes positive. This means that

the true values is an isolated local minimizer of (11) and that

the J(e) is locally convex around the true values. Therefore

gradient descent is enough to converge to the true values if

the initial error is sufficiently small.

V. SIMULATION EXAMPLE

In this section we report a simulation example to illustrate

the relative position estimator of Sect. IV. The simulation

involves |V| = 6 agents over an SE(2) infinitesimally

rigid framework shown in Fig. 1(a). The following gains

were employed: ke = 5, k1 = k2 = k3 = 100. The

initial conditions ξ̂(t0) and ϑ̂(t0) for the estimator (12) were

taken as their real values plus a (small enough) random

perturbation. Figures 1(b–c) report the results for the sim-

ulation. In Fig. 1(b) is shown the behavior of e(t), the error

vector between the measured and estimated bearing angles

as defined in (10). We note that under the action of the

estimator (12), all the |E| components of e(t) converge to

zero as expected owing to the infinitesimal rigidity of the

considered framework. Next, Fig. 1(c) shows the trajectories

of ξ̂ιi(t) and ψ̂i(t) on the plane (with ψ̂i(t) obtained from (8)

when evaluated upon the estimated ϑ̂i): here, the real (and

constant) poses (p, ψ) are indicated by square symbols and

thick green arrows, while the initial ξ̂ιi(t0) and ψ̂i(t0) are

represented by small circles and dashed black arrows. We

can thus note how the estimated position and orientation of

every agent converges towards its real value.

VI. CONCLUSION

This work proposed a distributed estimator for estimating

the unscaled relative positions of a team of agents in a

common reference frame. The key feature of this work is

the estimation only requires bearing measurements that are

expressed in the local frame of each agent. The estimator

builds on a corresponding extension of rigidity theory for

frameworks in SE(2). The main contribution of this work,

therefore, was the characterization of infinitesimal rigidity

in SE(2). It was shown that infinitesimal rigidity of the

framework is related to the rank of the directed bearing

rigidity matrix. The null-space of that matrix describes the

infinitesimal motions of an SE(2) framework, and include

the rigid body translations and dilations, in addition to

coordinated rotations.
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