Estimating Source Term Parameters through Probabilistic Bayesian inference: An Approach based on an Adaptive Multiple Importance Sampling Algorithm - IMT - Institut Mines-Télécom Access content directly
Conference Papers Year : 2014

Estimating Source Term Parameters through Probabilistic Bayesian inference: An Approach based on an Adaptive Multiple Importance Sampling Algorithm

Abstract

This paper presents an adaptive approach based on probabilistic Bayesian inference to estimate the parameters of an atmospheric pollution source term. After introducing the problem and assessing the computational framework, we present an Importance Sampling based algorithm called Adaptive Multiple Importance Sampling (AMIS). It performs an efficient calculation of the source parameter posterior distribution by iteratively upgrading the proposal's parameters and recycling all generations of weighted samples, thus allowing a faster convergence and reducing the number of necessary iterations. We highlight the results of the AMIS by comparing it to a MCMC estimation in a simple example.
Not file

Dates and versions

hal-01064661 , version 1 (16-09-2014)

Identifiers

  • HAL Id : hal-01064661 , version 1

Cite

Harizo Rajaona, Patrick Armand, François Septier, Yves Delignon, Christophe Olry, et al.. Estimating Source Term Parameters through Probabilistic Bayesian inference: An Approach based on an Adaptive Multiple Importance Sampling Algorithm. 16th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes (HARMO 16), Sep 2014, Varna, Bulgaria. pp.1-5. ⟨hal-01064661⟩
195 View
0 Download

Share

Gmail Facebook Twitter LinkedIn More