Multi-organ localization combining global-to-local regression and confidence maps

Abstract :

We propose a method for fast, accurate and robust localization of several organs in medical images. We generalize global-to-local cascades of regression forests [1] to multiple organs. A first regressor encodes global relationships between organs. Subsequent regressors refine the localization of each organ locally and independently for improved accuracy. We introduce confidence maps, which incorporate information about both the regression vote distribution and the organ shape through probabilistic atlases. They are used within the cascade itself, to better select the test voxels for the second set of regressors, and to provide richer information than the classical bounding boxes thanks to the shape prior. We demonstrate the robustness and accuracy of our approach through a quantitative evaluation on a large database of 130 CT volumes.

Type de document :
Communication dans un congrès
MICCAI, 2014, Boston, United States. LNCS 8675, pp.337-344, 2014
Liste complète des métadonnées

https://hal-imt.archives-ouvertes.fr/hal-01138091
Contributeur : Admin Télécom Paristech <>
Soumis le : mercredi 1 avril 2015 - 10:20:50
Dernière modification le : jeudi 11 janvier 2018 - 06:23:39

Identifiants

  • HAL Id : hal-01138091, version 1

Citation

Romane Gauriau, Rémi Cuingnet, David Lesage, Isabelle Bloch. Multi-organ localization combining global-to-local regression and confidence maps. MICCAI, 2014, Boston, United States. LNCS 8675, pp.337-344, 2014. 〈hal-01138091〉

Partager

Métriques

Consultations de la notice

105