J. Andrews, F. Baccelli, and R. Ganti, A Tractable Approach to Coverage and Rate in Cellular Networks, IEEE Transactions on Communications, vol.59, issue.11, pp.3122-3134, 2011.
DOI : 10.1109/TCOMM.2011.100411.100541

URL : https://hal.archives-ouvertes.fr/hal-00940544

F. Baccelli and B. Blaszczyszyn, Stochastic Geometry and Wireless Networks: Volume I Theory, Foundations and Trends?? in Networking, vol.3, issue.3-4, pp.249-449, 2009.
DOI : 10.1561/1300000006

URL : https://hal.archives-ouvertes.fr/inria-00403039

H. S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews, Modeling and analysis of ktier downlink heterogeneous cellular networks Selected Areas in Communications, IEEE Journal on, vol.30, issue.3, pp.550-560, 2012.

I. Nakata and N. Miyoshi, Spatial stochastic models for analysis of heterogeneous cellular networks with repulsively deployed base stations, Performance Evaluation, vol.78, issue.0, pp.7-17, 2014.
DOI : 10.1016/j.peva.2014.05.002

M. Haenggi, Mean Interference in Hard-Core Wireless Networks, IEEE Communications Letters, vol.15, issue.8, pp.792-794, 2011.
DOI : 10.1109/LCOMM.2011.061611.110960

T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes, Journal of Functional Analysis, vol.205, issue.2, pp.414-463, 2003.
DOI : 10.1016/S0022-1236(03)00171-X

N. Miyoshi and T. Shirai, A Cellular Network Model with Ginibre Configured Base Stations, Advances in Applied Probability, vol.3, issue.03, pp.832-845, 2014.
DOI : 10.1070/RM2000v055n05ABEH000321

N. Deng, W. Zhou, and M. Haenggi, The Ginibre Point Process as a Model for Wireless Networks With Repulsion, IEEE Transactions on Wireless Communications, vol.14, issue.1, 2014.
DOI : 10.1109/TWC.2014.2332335

J. Moller and R. P. Waagepetersen, Statistical inference and simulation for spatial point processes, 2004.
DOI : 10.1201/9780203496930

A. Baddeley and R. Turner, Spatstat: an r package for analyzing spatial point patterns, Journal of statistical software, vol.12, issue.6, pp.1-42, 2005.

A. Goldman, The Palm measure and the Voronoi tessellation for the Ginibre process, The Annals of Applied Probability, vol.20, issue.1, pp.90-128, 2010.
DOI : 10.1214/09-AAP620