L. Rashidi, S. Hashemi, and A. Hamzeh, Anomaly Detection in Categorical Datasets Using Bayesian Networks, Artificial Intelligence and Computational Intelligence, pp.610-619, 2011.
DOI : 10.1007/978-3-642-23887-1_78

N. Ye and M. Xu, Probabilistic networks with undirected links for anomaly detection, Man, and Cybernetics Information Assurance and Security Workshop, pp.175-179, 2000.

W. Wong, A. Moore, G. Cooper, and M. Wagner, Bayesian network anomaly pattern detection for disease outbreaks, ICML, pp.808-815, 2003.

U. Lerner, R. Parr, D. Koller, and G. Biswas, Bayesian fault detection and diagnosis in dynamic systems, AAAI/IAAI, pp.531-537, 2000.

S. Kemkemian, A. Larroque, and C. Enderli, The Industrial Challenges of Airborne AESA Radars, IET International Radar Conference 2013, 2013.
DOI : 10.1049/cp.2013.0492

T. Heskes and O. Zoeter, Generalized belief propagation for approximate inference in hybrid bayesian networks, Artificial Intelligence and Statistics, 2003.

N. Friedman and D. Koller, Probabilistic Graphical Models: Principles and Techniques, 2009.

F. R. Bach and M. I. Jordan, Learning graphical models with mercer kernels, Advances in Neural Information Processing Systems, pp.1009-1016, 2002.

M. Schmidt, Graphical model structure learning with l1-regularization, 2010.

G. Varoquaux, A. Gramfort, J. Poline, and B. Thirion, Brain covariance selection: better individual functional connectivity models using population prior, pp.2334-2342, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00512451

Y. F. Atchade, G. Fort, and E. Moulines, On stochastic proximal gradient algorithms

R. Laby, A. Gramfort, F. Roueff, C. Enderli, and A. Larroque, Apprentissage d'un modèle graphique non orienté hybride parcimonieux par utilisation du gradient proximal stochastique

J. Besag, Statistical Analysis of Non-Lattice Data, The Statistician, vol.24, issue.3, 1975.
DOI : 10.2307/2987782

E. Ising, Beitrag zur Theorie des Ferromagnetismus, Zeitschrift fur Physik, pp.253-258, 1925.
DOI : 10.1007/BF02980577

R. Potts, Some generalized order-disorder transformations, Proc. Cambridge Philosophie Soc, 1953.
DOI : 10.1103/PhysRev.60.252

C. Bishop, Pattern Recognition and Machine Learning, 2006.

H. Raguet, J. Fadili, and G. Peyré, A Generalized Forward-Backward Splitting, SIAM Journal on Imaging Sciences, vol.6, issue.3, pp.1199-1226, 2013.
DOI : 10.1137/120872802

URL : https://hal.archives-ouvertes.fr/hal-00613637