D. A. Engemann and A. Gramfort, Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals, NeuroImage, vol.108, issue.0, pp.328-342, 2015.
DOI : 10.1016/j.neuroimage.2014.12.040

O. Ledoit and M. Wolf, A well-conditioned estimator for large-dimensional covariance matrices, Journal of Multivariate Analysis, vol.88, issue.2, pp.365-411, 2004.
DOI : 10.1016/S0047-259X(03)00096-4

M. E. Tipping and C. M. Bishop, Probabilistic Principal Component Analysis, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.61, issue.3, pp.611-622, 1999.
DOI : 10.1111/1467-9868.00196

D. Barber, Bayesian reasoning and machine learning, 2012.
DOI : 10.1017/CBO9780511804779

A. Dale, A. Liu, B. Fischl, and R. Buckner, Dynamic Statistical Parametric Mapping, Neuron, vol.26, issue.1, pp.55-67, 2000.
DOI : 10.1016/S0896-6273(00)81138-1

B. V. Veen, W. V. Drongelen, M. Yuchtman, and A. Suzuki, Localization of brain electrical activity via linearly constrained minimum variance spatial filtering, IEEE Transactions on Biomedical Engineering, vol.44, issue.9, pp.867-880, 1997.
DOI : 10.1109/10.623056

A. Gramfort, M. Kowalski, and M. S. Hämäläinen, Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods, Physics in Medicine and Biology, vol.57, issue.7, pp.1937-1961, 2012.
DOI : 10.1088/0031-9155/57/7/1937

URL : https://hal.archives-ouvertes.fr/hal-00690774

R. Henson and M. Rugg, Neural response suppression, haemodynamic repetition effects, and behavioural priming, Neuropsychologia, vol.41, issue.3, pp.263-270, 2003.
DOI : 10.1016/S0028-3932(02)00159-8

A. Gramfort, M. Luessi, E. Larson, D. Engemann, D. Strohmeier et al., MNE software for processing MEG and EEG data, NeuroImage, vol.86, issue.0, pp.446-460, 2014.
DOI : 10.1016/j.neuroimage.2013.10.027

S. Taulu, J. Simola, and M. Kajola, Applications of the signal space separation method, IEEE Transactions on Signal Processing, vol.53, issue.9, pp.3359-3372, 2005.
DOI : 10.1109/TSP.2005.853302

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier et al., MEG and EEG data analysis with MNE-Python, Frontiers in Neuroscience, vol.7, issue.267, 2013.
DOI : 10.3389/fnins.2013.00267

URL : http://doi.org/10.3389/fnins.2013.00267

D. Strohmeier, J. Haueisen, and A. Gramfort, Improved MEG/EEG source localization with reweighted mixed-norms, 2014 International Workshop on Pattern Recognition in Neuroimaging, pp.1-4, 2014.
DOI : 10.1109/PRNI.2014.6858545

URL : https://hal.archives-ouvertes.fr/hal-01044748