A. M. Atto, E. Trouvé, Y. Berthoumieu, and G. Mercier, Multidate Divergence Matrices for the Analysis of SAR Image Time Series, IEEE Transactions on Geoscience and Remote Sensing, vol.51, issue.4, 1922.
DOI : 10.1109/TGRS.2012.2210228

URL : https://hal.archives-ouvertes.fr/hal-00721877

Y. Bazi, L. Bruzzone, and F. Melgani, An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images, IEEE Transactions on Geoscience and Remote Sensing, vol.43, issue.4, pp.874-887, 2005.
DOI : 10.1109/TGRS.2004.842441

F. Bovolo and L. Bruzzone, A detail-preserving scale-driven approach to change detection in multitemporal SAR images, IEEE Transactions on Geoscience and Remote Sensing, vol.43, issue.12, pp.2963-2972, 2005.
DOI : 10.1109/TGRS.2005.857987

D. Brunner, G. Lemoine, and L. Bruzzone, Earthquake Damage Assessment of Buildings Using VHR Optical and SAR Imagery, IEEE Transactions on Geoscience and Remote Sensing, vol.48, issue.5, pp.2403-2420, 2010.
DOI : 10.1109/TGRS.2009.2038274

L. Bruzzone, M. Marconcini, U. Wegmuller, and A. Wiesmann, An advanced system for the automatic classification of multitemporal SAR images, IEEE Transactions on Geoscience and Remote Sensing, vol.42, issue.6, pp.1321-1334, 2004.
DOI : 10.1109/TGRS.2004.826821

L. Bruzzone and D. Prieto, Automatic analysis of the difference image for unsupervised change detection, IEEE Transactions on Geoscience and Remote Sensing, vol.38, issue.3, pp.1171-1182, 2000.
DOI : 10.1109/36.843009

L. Bruzzone and S. Serpico, An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images, IEEE Transactions on Geoscience and Remote Sensing, vol.35, issue.4, pp.858-867, 1997.
DOI : 10.1109/36.602528

A. Buades, B. Coll, and J. Morel, A Non-Local Algorithm for Image Denoising, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.60-65, 2005.
DOI : 10.1109/CVPR.2005.38

D. Jong, R. De-bruin, S. De-wit, A. Schaepman, M. Dent et al., Analysis of monotonic greening and browning trends from global NDVI time-series, Remote Sensing of Environment, vol.115, issue.2, pp.692-702, 2011.
DOI : 10.1016/j.rse.2010.10.011

C. Deledalle, L. Denis, and F. Tupin, Iterative Weighted Maximum Likelihood Denoising With Probabilistic Patch-Based Weights, IEEE Transactions on Image Processing, vol.18, issue.12, pp.2661-2672, 2009.
DOI : 10.1109/TIP.2009.2029593

URL : https://hal.archives-ouvertes.fr/ujm-00431266

J. Deng, K. Wang, Y. Deng, and G. Qi, PCA???based land???use change detection and analysis using multitemporal and multisensor satellite data, International Journal of Remote Sensing, vol.69, issue.16, pp.4823-4838, 2008.
DOI : 10.1016/S0197-3975(99)00013-2

T. Fung, An Assessment Of TM Imagery For Land-cover Change Detection, IEEE Transactions on Geoscience and Remote Sensing, vol.28, issue.4, pp.681-684, 1990.
DOI : 10.1109/TGRS.1990.572980

T. Fung and E. Ledrew, Application of principal components analysis to change detection, Photogrammetric Engineering and Remote Sensing, vol.53, pp.1649-1658, 1987.

J. Goodman, Some fundamental properties of speckle*, Journal of the Optical Society of America, vol.66, issue.11, pp.1145-1150, 1976.
DOI : 10.1364/JOSA.66.001145

C. Huang, B. Wylie, L. Yang, C. Homer, and G. Zylstra, Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance, International Journal of Remote Sensing, vol.1, issue.8, pp.1741-1748, 2002.
DOI : 10.1016/0034-4257(88)90116-2

A. Julea, N. Méger, P. Bolon, C. Rigotti, M. Doin et al., Unsupervised Spatiotemporal Mining of Satellite Image Time Series Using Grouped Frequent Sequential Patterns, IEEE Transactions on Geoscience and Remote Sensing, vol.49, issue.4, pp.1417-1430, 2011.
DOI : 10.1109/TGRS.2010.2081372

URL : https://hal.archives-ouvertes.fr/hal-00596806

A. Julea, N. Méger, C. Rigotti, E. Trouvé, R. Jolivet et al., Efficient Spatio-temporal Mining of Satellite Image Time Series for Agricultural Monitoring, IEEE Transactions on Machine Learning and Data Mining, vol.5, pp.23-44, 2012.

S. Kay, Fundamentals of statistical signal processing, Volume II: Detection theory, Upper Saddle River, vol.7, 1998.

C. Kervrann and J. Boulanger, Optimal Spatial Adaptation for Patch-Based Image Denoising, IEEE Transactions on Image Processing, vol.15, issue.10, pp.2866-2878, 2006.
DOI : 10.1109/TIP.2006.877529

V. A. Krylov, G. Moser, A. Voisin, S. B. Serpico, and J. Zerubia, Change detection with synthetic aperture radar images by Wilcoxon statistic likelihood ratio test, 2012 19th IEEE International Conference on Image Processing, pp.2093-2096, 2012.
DOI : 10.1109/ICIP.2012.6467304

URL : https://hal.archives-ouvertes.fr/hal-00724284

P. Lombardo and C. Oliver, Maximum likelihood approach to the detection of changes between multitemporal SAR images, IEE Proceedings on Radar, Sonar and Navigation, IET, pp.200-210, 2001.
DOI : 10.1049/ip-rsn:20010114

P. Lu, A. Stumpf, N. Kerle, and N. Casagli, Object-Oriented Change Detection for Landslide Rapid Mapping, IEEE Geoscience and Remote Sensing Letters, vol.8, issue.4, pp.701-705, 2011.
DOI : 10.1109/LGRS.2010.2101045

S. Marchesi and L. Bruzzone, ICA and kernel ICA for change detection in multispectral remote sensing images, 2009 IEEE International Geoscience and Remote Sensing Symposium, p.980, 2009.
DOI : 10.1109/IGARSS.2009.5418265

B. Martínez and M. Gilabert, Vegetation dynamics from NDVI time series analysis using the wavelet transform, Remote Sensing of Environment, vol.113, issue.9, pp.1823-1842, 2009.
DOI : 10.1016/j.rse.2009.04.016

M. Preiss and N. Stacy, Coherent change detection: theoretical description and experimental results, 2006.

G. Quin, B. Pinel-puyssegur, J. M. Nicolas, and P. Loreaux, MIMOSA: An Automatic Change Detection Method for SAR Time Series, IEEE Transactions on Geoscience and Remote Sensing, vol.52, issue.9, pp.5349-5363, 2013.
DOI : 10.1109/TGRS.2013.2288271

R. J. Radke, S. Andra, O. Al-kofahi, and B. Roysam, Image change detection algorithms: a systematic survey, IEEE Transactions on Image Processing, vol.14, issue.3, pp.294-307, 2005.
DOI : 10.1109/TIP.2004.838698

E. Rignot and J. Van-zyl, Change detection techniques for ERS-1 SAR data, IEEE Transactions on Geoscience and Remote Sensing, vol.31, issue.4, pp.896-906, 1993.
DOI : 10.1109/36.239913

J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, pp.888-905, 2000.

A. Singh, Review Article Digital change detection techniques using remotely-sensed data, International Journal of Remote Sensing, vol.43, issue.6, pp.989-1003, 1989.
DOI : 10.1016/0034-4257(79)90013-0

X. Su, C. A. Deledalle, F. Tupin, and H. Sun, Two-Step Multitemporal Nonlocal Means for Synthetic Aperture Radar Images, IEEE Transactions on Geoscience and Remote Sensing, vol.52, pp.6181-6196, 2014.

H. Taubenböck, T. Esch, A. Felbier, M. Wiesner, A. Roth et al., Monitoring urbanization in mega cities from space. Remote sensing of Environment, pp.162-176, 2012.

J. Verbesselt, R. Hyndman, G. Newnham, and D. Culvenor, Detecting trend and seasonal changes in satellite image time series. Remote sensing of Environment, pp.106-115, 2010.

J. Verbesselt, R. Hyndman, A. Zeileis, and D. Culvenor, Phenological change detection while accounting for abrupt and gradual trends in satellite image time series, Remote Sensing of Environment, vol.114, issue.12, pp.2970-2980, 2010.
DOI : 10.1016/j.rse.2010.08.003

V. Luxburg and U. , A tutorial on spectral clustering, Statistics and Computing, vol.21, issue.1, pp.395-416, 2007.
DOI : 10.1007/s11222-007-9033-z

J. Yin, Z. Yin, H. Zhong, S. Xu, X. Hu et al., Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy (1979???2009) in China, Environmental Monitoring and Assessment, vol.15, issue.3, pp.609-621, 1979.
DOI : 10.1007/s10661-010-1660-8