Compressed sensing in Hilbert spaces

Abstract : In many linear inverse problems, we want to estimate an unknown vector belonging to a high-dimensional (or infinite-dimensional) space from few linear measurements. To overcome the ill-posed nature of such problems, we use a low-dimension assumption on the unknown vector: it belongs to a low-dimensional model set. The question of whether it is possible to recover such an unknown vector from few measurements then arises. If the answer is yes, it is also important to be able to describe a way to perform such a recovery. We describe a general framework where appropriately chosen random measurements guarantee that recovery is possible. We further describe a way to study the performance of recovery methods that consist in the minimization of a regularization function under a data-fit constraint.
Type de document :
Pré-publication, Document de travail
Contributeur : Yann Traonmilin <>
Soumis le : jeudi 16 février 2017 - 10:37:08
Dernière modification le : samedi 18 février 2017 - 01:18:05


Fichiers produits par l'(les) auteur(s)


Copyright (Tous droits réservés)


  • HAL Id : hal-01469134, version 1
  • ARXIV : 1702.04917


Yann Traonmilin, Gilles Puy, Rémi Gribonval, Mike Davies. Compressed sensing in Hilbert spaces. 2017. <hal-01469134>



Consultations de
la notice


Téléchargements du document