F. Auricchio, R. L. Taylor, and J. Lubliner, Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior, Computer Methods in Applied Mechanics and Engineering, vol.146, issue.3-4, pp.281-312, 1997.
DOI : 10.1016/S0045-7825(96)01232-7

K. Bhattacharya, microstructure of martensite, materials modelling, Oxford materials, 2003.

B. C. Chang, J. A. Shaw, and M. A. Iadicola, Thermodynamics of Shape Memory Alloy Wire: Modeling, Experiments, and Application, Continuum Mechanics and Thermodynamics, vol.56, issue.7, pp.83-118, 2006.
DOI : 10.1007/s00161-006-0022-9

V. Chevalier, R. Arbab-chirani, S. Arbab-chirani, and S. Calloch, An improved model of 3-dimensional finite element analysis of mechanical behavior of endodontic instruments, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, vol.109, pp.111-121, 2010.

D. Christ and S. Reese, A finite element model for shape memory alloys considering thermomechanical couplings at large strains, International Journal of Solids and Structures, vol.46, issue.20, pp.3694-3709, 2009.
DOI : 10.1016/j.ijsolstr.2009.06.017

A. Chrysochoos, La thermographie infrarouge, un outil en puissance pour????????tudier le????comportement des mat????riauxInfrared thermography, a potential tool for analysing the material behaviour, M????canique & Industries, vol.3, issue.1, pp.3-14, 2002.
DOI : 10.1016/S1296-2139(01)01128-9

C. De-la-flor, F. Urbina, and . Ferrando, Constitutive model of shape memory alloys: Theoretical formulation and experimental validation, Materials Science and Engineering: A, vol.427, issue.1-2, pp.112-122, 2006.
DOI : 10.1016/j.msea.2006.04.008

D. Delpueyo, M. Grédiac, X. Balandraud, and C. Badulescu, Investigation of martensitic microstructures in a monocrystalline Cu???Al???Be shape memory alloy with the grid method and infrared thermography, Mechanics of Materials, vol.45, pp.34-51, 2012.
DOI : 10.1016/j.mechmat.2011.09.007

D. Favier, H. Louche, P. Schlosser, L. Orgéas, P. Vacher et al., Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline Ti-50.8 at.% Ni thin tube under tension. Investigation via temperature and strain fields measurements, Acta Materialia, pp.55-5310, 2007.
DOI : 10.1016/j.actamat.2007.05.027

URL : https://hal.archives-ouvertes.fr/hal-00336739

P. Feng and Q. Sun, Experimental investigation on macroscopic domain formation and evolution in polycrystalline NiTi microtubing under mechanical force, Journal of the Mechanics and Physics of Solids, vol.54, issue.8, pp.1568-1603, 2006.
DOI : 10.1016/j.jmps.2006.02.005

Y. He and Q. Sun, Rate-dependent domain spacing in a stretched NiTi strip, International Journal of Solids and Structures, vol.47, issue.20, pp.2775-2783, 2010.
DOI : 10.1016/j.ijsolstr.2010.06.006

URL : https://hal.archives-ouvertes.fr/hal-01241582

Z. Hu, Q. Sun, and Z. Zhong, Numerical simulation for stress-induced phase transformation of SMAs tube under tension, 8th Asia-Pacific Symposium on Engineering Plasticity and its Applications, pp.340-341, 2006.

D. Koistinen and R. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metallurgica, vol.7, issue.1, pp.59-60, 1959.
DOI : 10.1016/0001-6160(59)90170-1

D. C. Lagoudas, P. B. Entchev, P. Popov, E. Patoor, L. C. Brinson et al., Shape memory alloys, Part II: Modeling of polycrystals, Mechanics of Materials, vol.38, issue.5-6, pp.430-462, 2006.
DOI : 10.1016/j.mechmat.2005.08.003

V. I. Levitas and E. Stein, Simple micromechanical model of thermoelastic martensitic transformations, Mechanics Research Communications, vol.24, issue.3, pp.309-318, 1997.
DOI : 10.1016/S0093-6413(97)00028-1

A. Maynadier, D. Depriester, K. Lavernhe-taillard, and O. Hubert, Thermo-mechanical description of phase transformation in Ni-Ti Shape Memory Alloy, Procedia Engineering, vol.10, pp.2208-2213, 2011.
DOI : 10.1016/j.proeng.2011.04.365

A. Maynadier, M. Poncelet, K. Lavernhe-taillard, and S. Roux, One-shot Measurement of Thermal and Kinematic Fields: InfraRed Image Correlation (IRIC), Experimental Mechanics, vol.43, issue.3???4, pp.241-255, 2012.
DOI : 10.1007/s11340-011-9483-2

S. Nemat-nasser, J. Y. Choi, W. G. Guo, and J. B. Isaacs, Very high strain-rate response of a NiTi shape-memory alloy, New Directions in Mechanics and Selected Articles in Micromechanics of Materials, pp.287-298, 2005.
DOI : 10.1016/j.mechmat.2004.03.007

E. Patoor, D. C. Lagoudas, P. B. Entchev, L. C. Brinson, and X. Gao, Shape memory alloys, Part I: General properties and modeling of single crystals, Mechanics of Materials, vol.38, issue.5-6, pp.391-429, 2006.
DOI : 10.1016/j.mechmat.2005.05.027

E. Pieczyska, S. Gadaj, W. Nowacki, and H. Tobushi, Phase-Transformation Fronts Evolution for Stress- and Strain-Controlled Tension Tests in TiNi Shape Memory Alloy, Experimental Mechanics, vol.218, issue.8, pp.531-542, 2006.
DOI : 10.1007/s11340-006-8351-y

P. Schlosser, H. Louche, D. Favier, and L. Orgéas, Image Processing to Estimate the Heat Sources Related to Phase Transformations during Tensile Tests of NiTi Tubes, Strain, vol.56, issue.3, pp.260-271, 2007.
DOI : 10.1111/j.1475-1305.2007.00350.x

J. A. Shaw, Simulations of localized thermo-mechanical behavior in a NiTi shape memory alloy, International Journal of Plasticity, vol.16, issue.5, pp.541-562, 2000.
DOI : 10.1016/S0749-6419(99)00075-3

J. A. Shaw, A thermomechanical model for a 1-D shape memory alloy wire with propagating instabilities, International Journal of Solids and Structures, vol.39, issue.5, pp.1275-1305, 2002.
DOI : 10.1016/S0020-7683(01)00242-6

J. A. Shaw and S. Kyriakides, Thermomechanical aspects of NiTi, Journal of the Mechanics and Physics of Solids, vol.43, issue.8, pp.1243-1281, 1995.
DOI : 10.1016/0022-5096(95)00024-D

J. A. Shaw and S. Kyriakides, On the nucleation and propagation of phase transformation fronts in a NiTi alloy, Acta Materialia, vol.45, issue.2, pp.683-700, 1997.
DOI : 10.1016/S1359-6454(96)00189-9

P. Thamburaja and N. Nikabdullah, A macroscopic constitutive model for shape-memory alloys: Theory and finite-element simulations, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.9-12, pp.1074-1086, 2009.
DOI : 10.1016/j.cma.2008.11.016

X. Zhang, P. Feng, Y. He, T. Yu, and Q. Sun, Experimental study on rate dependence of macroscopic domain and stress hysteresis in NiTi shape memory alloy strips, International Journal of Mechanical Sciences, vol.52, issue.12, pp.1660-1670, 2010.
DOI : 10.1016/j.ijmecsci.2010.08.007

URL : https://hal.archives-ouvertes.fr/hal-01241589