Two scale homogenization of a row of locally resonant inclusions - the case of anti-plane shear waves

Abstract : We present a homogenization model for a single row of locally resonant inclusions. The resonances , of the Mie type, result from a high contrast in the shear modulus between the inclusions and the elastic matrix. The presented homogenization model is based on a matched asymptotic expansion technique; it slightly di↵ers from the classical homogenization which applies for thick arrays with many rows of inclusions (and thick means large compared to the wavelength in the matrix). Instead of the effective bulk parameters found in the classical homogenization, we end up with interface parameters entering in jump conditions for the displacement and for the normal stress; among these parameters, one is frequency dependent and encapsulates the resonant behavior of the inclusions. Our homogenized model is validated by comparison with results of full wave calculations. It is shown to be ecient in the low frequency domain and accurately describes the e↵ects of the losses in the soft inclusions.
Type de document :
Article dans une revue
Journal of the Mechanics and Physics of Solids, Elsevier, 2017, 106, pp.80-94. 〈10.1016/j.jmps.2017.05.001〉
Liste complète des métadonnées

https://hal-polytechnique.archives-ouvertes.fr/hal-01657086
Contributeur : Jean-Jacques Marigo <>
Soumis le : mercredi 6 décembre 2017 - 12:48:23
Dernière modification le : vendredi 8 décembre 2017 - 01:22:16

Fichier

JMPS_2016_614_Revision 1_V.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Kim Pham, Agnes Maurel, Jean-Jacques Marigo. Two scale homogenization of a row of locally resonant inclusions - the case of anti-plane shear waves. Journal of the Mechanics and Physics of Solids, Elsevier, 2017, 106, pp.80-94. 〈10.1016/j.jmps.2017.05.001〉. 〈hal-01657086〉

Partager

Métriques

Consultations de la notice

33

Téléchargements de fichiers

2