Fast Rule Mining in Ontological Knowledge Bases with AMIE+ - Archive ouverte HAL Access content directly
Journal Articles The VLDB Journal Year : 2015

Fast Rule Mining in Ontological Knowledge Bases with AMIE+

(1) , , , (2)
1
2

Abstract

Recent advances in information extraction have led to huge knowledge bases (KBs), which capture knowledge in a machine-readable format. Inductive Logic Programming (ILP) can be used to mine logical rules from these KBs, such as " If two persons are married , then they (usually) live in the same city ". While ILP is a mature field, mining logical rules from KBs is difficult, because KBs make an open world assumption. This means that absent information cannot be taken as counterexamples. Our approach AMIE [16] has shown how rules can be mined effectively from KBs even in the absence of counterexamples. In this paper, we show how this approach can be optimized to mine even larger KBs with more than 12M statements. Extensive experiments show how our new approach, AMIE+, extends to areas of mining that were previously beyond reach.
Fichier principal
Vignette du fichier
vldbj2015.pdf (435.65 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01699866 , version 1 (02-02-2018)

Identifiers

  • HAL Id : hal-01699866 , version 1

Cite

Luis Galárraga, Christina Teflioudi, Katja Hose, Fabian Suchanek. Fast Rule Mining in Ontological Knowledge Bases with AMIE+. The VLDB Journal, 2015. ⟨hal-01699866⟩
996 View
1374 Download

Share

Gmail Facebook Twitter LinkedIn More