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Abstract Spatial crowdsourcing is an activity consisting in outsourc-
ing spatial tasks to a community of online, yet on-ground and mobile,
workers. A spatial task is characterized by the requirement that workers
must move from their current location to a specified location to accom-
plish the task. We study the assignment of spatial tasks to workers. A
sequence of sets of spatial tasks is assigned to workers as they arrive.
We want to minimize the cost incurred by the movement of the workers
to perform the tasks. In the meanwhile, we are seeking solutions that
are socially fair. We discuss the competitiveness in terms of competitive
ratio and social fairness of the Work Function Algorithm, the Greedy Al-
gorithm, and the Randomized versions of the Greedy Algorithm to solve
this problem. These online algorithms are memory-less and are either
inefficient or unfair. In this paper, we devise two Distribution Aware Al-
gorithms that utilize the distribution information of the tasks and that
assign tasks to workers on the basis of the learned distribution. With
realistic and synthetic datasets, we empirically and comparatively eval-
uate the performance of the three baseline and two Distribution Aware
Algorithms.

Keywords: Spatial Crowdsourcing, Task Assignment, Cost, Social Fairness

1 Introduction

TaskRabbit1 is one of a a growing number of new crowdsourcing platforms where
users can outsource various tasks to crowd workers in the physical world. Some
of these task require, indeed, that a worker moves to a specified location.

This activity is referred to as spatial crowdsourcing. It consists in outsourcing
spatial tasks to a community of online, yet on-ground and mobile, workers. A
spatial task is characterized by the requirement that workers must move from
their current location to a specified location to accomplish the task.

1 www.taskrabbit.com
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For instance, in the aftermath of natural disasters (e.g., earthquakes, virus
outbreaks), new platforms such as Ushahidi2 and inSTEDD3 help request and
orchestrate actions of volunteering members of the public and independent relief
forces to gather information or provide assistance. TaskRabbits wait-for-delivery
service4 finds someone to wait for a delivery and sign for a package. The assigned
worker moves to the mailing address to receive and sign for the package and
replace the consignee. The service alleviates the costly delivery failure problem.

Workers of the spatial crowdsourcing platform complained that the time
spent on commuting between different locations to perform different tasks is non-
negligible and is unpaid[1]. Therefore, in this paper, we study the assignment of
spatial tasks to workers with the objective of minimizing the “commuting cost”
which can refer to time and transportation fee. The spatial task is known by its
location and assignment time interval and needs to be assigned to workers as it
arrives. Workers have an initial position and move to the locations of the tasks
to which they have been assigned. We want to find an assignment policy that
minimizes the commuting cost of the workers to reach the assigned tasks. Cost
refers to the commuting cost in this paper. In addition to cost optimization, we
are seeking solutions that are socially fair. Namely, we are looking for solutions
that minimize the variance of the workload among workers. We want to assign
a similar number of tasks with a similar total cost to each worker. No worker
should, preferably, be overloaded or starved.

In many applications, the spatial tasks are not randomly distributed. The
distribution follows the density distribution of requesters or resources, and it
may evolve over time. For example, we observed that the delivery failures occur
densely in residential areas during office hours, and sparsely in those areas in the
evening when most people are back home. By considering the spatial temporal
distribution of tasks that can be learned from the history, we can design better
strategies for the assignment.

In this paper, we study the opportunity to leverage the clustering of tasks
(e.g. calls for wait-for-delivery are clustered in residential areas; calls for assis-
tance are clustered in the disaster area). While the actual mechanisms to learn
the distribution of tasks and clusters of tasks are orthogonal to the main issue
discussed here, we devise algorithms that assign tasks to workers on the basis of
the distribution of tasks and its evolution. Our hypothesis is that knowledge of
the distributions of tasks and of its evolution not only help minimize the cost but
also provide a basis for the fair assignment of tasks and cost among the workers.
We evaluate the efficiency, in terms of cost minimization, and effectiveness in
terms of social fairness of our proposed algorithms with several datasets. We
use a realistic dataset where the schedule of spatial tasks is constructed from
the log of a real parcel delivery service for an application-level evaluation. We
create three synthetic datasets for the micro evaluation of the various behaviours
of the algorithms. We empirically and comparatively evaluate the cost for each

2 www.ushahidi.com
3 instedd.org
4 www.taskrabbit.com/m/shopping-delivery/wait-for-delivery
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algorithm with each dataset. We compare the algorithms from the point of view
of social fairness.

The remainder of this paper is organized as follows. Section 2 synthesizes
related works. Section 3 gives a formal definition of the assignment and cost
minimization problem. In Section 4, we presents the algorithms we propose.
Thereafter, section 5 presents the experimental results. Section 6 concludes the
paper.

2 Related Work

Several variants of the problem of assigning spatial tasks to mobile workers have
been been studied under various sets of hypothesis [11,7,12,5,10,16].

The authors of [11] devise a taxonomy of spatial crowdsourcing. In their
taxonomy and in its vocabulary the problem that we consider is referred to as
a single task server assignment. We consider that workers that are willing to
accomplish the given tasks are identified. Therefore incentives and rewards are
orthogonal issues. The crowdsourcing service does not publish the spatial tasks to
the workers. Instead, any online worker sends his location to the crowdsourcing
server. The crowdsourcing server assign tasks to the workers. In [11], Kazemi and
Shahabi consider workers constrained by their location and workload: workers
can only be assigned to tasks in their neighbourhood and they can be only be
assigned up to a maximum number of tasks. Given a sequence of sets tasks, the
authors define and propose approximate solutions to the problem of assigning
tasks to workers while maximizing the number of tasks assigned.

In [7], workers can select the tasks they want to accomplish. Given a sequence
of sets tasks and workers choices, the authors define and propose approximate
solutions to the problem to the problem of assigning tasks to workers while
maximizing the number of tasks assigned. In [12], Kazemi et al. stressed the the
validity of the results provided by the crowd workers. They studied the problem
of maximizing the number of assigned tasks while ensuring that the quality of the
answers reaches a confidence level. In [5], Chen et al. consider the assignment
of moving workers to spatio-temporal tasks. Tasks can only be accomplished
within a specified area and time interval. The authors consider moving workers
who have known position, direction and speed, as well as confidence scores quan-
tifying how reliably workers can accomplish assigned tasks. Diversity is obtained
by assigning workers coming from different locations. The authors propose ap-
proximate solutions to the problem of assigning a set of workers to a set of tasks
while maximizing reliability and diversity. The authors of [10,16] propose a dif-
ferential privacy model for protecting location privacy of workers participating
in spatial crowdsourcing tasks, which is not the concern in our problem setting.

Unlike previous works, our proposal stresses both the cost incurred by the
movement of worker and the fairness of the assignment among the workers. Our
objective is to minimize the total cost after completing all the tasks and the
variance of the number of task and total cost per worker.
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3 Problem Formulation

3.1 Preliminaries

We consider finite metric two dimensional spaceM, which contains finite number
of locations, on which tasks are requested. For simplicity, we will name spatial
task as task in the following of this paper. A task rj is represented as a tu-
ple < rj , lj , bj , ej > where lj is the location where rj is requested, and [bj , ej ]
is its assignment time interval. For simplicity, we assume that there is no dif-
ference between the tasks in terms of execution time (i.e., they all need the
same amount of time for their execution). For a given time step t, we denote by
Rt = {rt1, rt2, ..., rtnt} the set of spatial tasks that can be assigned at that step
(bj < t < ej), n

t denotes the total number of tasks in time step t, and n the
overall number of tasks.

A worker wi is represented as a tuple < wi, l(wi), v > where l(wi) is the
location of the worker, and v its availability. Let W = {w1, w2, ..., wm} be a
set of workers who are committed to perform tasks, m be the total number of
workers.

The assignment instance is the fact that a batch of tasks Rt = {rt1, rt2, ..., rtnt}
is assigned to a set of workers by the platform at time step t.

Worker wi is required to move to the locations of the tasks assigned to her
(i.e., l(wi)

t+1 = ltj). Considering geographical constraints, a worker cannot be
assigned two different spatial tasks located at different locations in the same
assignment instance. A batch of nt tasks at time step t has to be assigned to
nt different workers. In our model, each task is assigned to exactly one worker
since every copy of the task can be regarded as an independent task.

We assume that the platform does not know when and where the next batch
of tasks is going to arrive. Thus, it has to make instant decisions to assign this
batch of tasks before the coming of the next ones. However, the platform could
have some knowledge about the distribution of the whole sequence of tasks, and
this distribution (i.e., pt :M→ [0, 1]) could be estimated by observing the data
logs (history of the assignments).

Definition 1. (Cluster). We define a cluster as a set of locations in a circle
region of the space M, where tasks are frequently requested. Each cluster (i.e.,
CLi) is characterized by a weight (i.e., αi), a center (i.e., µi) and the radius of
the circle (i.e., radiusi).

Tasks are distributed in forms of clusters, which is often the case in real
world applications. The weight of a cluster is proportional to how many tasks
were observed inside the cluster.

Moreover, distributions are different for different time period according to
some time slots (morning, lunch time, afternoon, etc.) or to the week days, i.e.,
pt+1 6= pt for some t.
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3.2 The Assignment Cost Minimization Problem

Our spatial task assignment problem consists in moving around the m workers
to perform the tasks that arise over time at some locations of the metric space
M. Tasks arrived at time step t must be treated at this step, and the assigned
workers have to move to the corresponding locations to perform their tasks.

Let c(l1, l2) denote the cost of moving from location l1 to l2. At each time step
t ∈ Z+, nt tasks {rt1, rt2, ..., rtnt} are requested at some locations {lt1, lt2, ..., ltnt},
and each task is assigned to exactly one of the m registered workers. Let at =
(at1, a

t
2, ..., a

t
nt) be the assignment at time step t, each atj represents the worker

assigned to task rtj . Then, the cost at time step t is
∑nt

j=1 c(l(a
t
j), l

t
j). The unas-

signed workers stay their locations unchanged, i.e. l(wi)
t+1 = l(wi)

t for all
wi /∈ at.

The goal is to determine the assignment strategy at at each time step t such
that the cost is minimized after the completion of all the tasks, i.e. to minimize

τ∑
t=1

nt∑
j=1

c(l(atj)
t, ltj) (1)

where τ is the total number of time steps.

4 Algorithms

Our online optimization problem is a Metrical Task System[4] and is a slight
variation of the k-server problem [6]. While the k-server problem considers the
assignment of single workers to a schedule of individual tasks, we consider that
tasks arrive set-at-a-time. Several classic algorithms[13],[14],[9],[3],[2] exist for
the k-server problem that can be adapted. Noticeably we should mention the
Greedy Algorithm and the Work Function Algorithm. The Greedy Algorithm
simply assigns a task to the nearest worker. The Work Function Algorithm as-
signs tasks to workers according to the work function[13]. The work function
balances between the distance of a set of worker to the set of tasks and the
hypothetic distance of the workers to the tasks if an optimal algorithm had been
used. The Work Function Algorithm has competitive ratio 2 ·

(|M|
m

)
− 1, where

|M| is the number of locations in the finite metric spaceM. Time complexity of
the Work Function Algorithm is at least O(

(
m
nt

)
mn2), which makes it perform

rather poorly in practice. The Greedy Algorithm has an unbounded compet-
itive ratio, but it performs very well in practice with low costs. Randomized
versions of the Greedy Algorithm[14], with their statistical bounds O(m2m) on
the competitive ratio[9], do not yield equally good results on practical problems.
Time complexity of both the Greedy and the Randomized versions of the Greedy
Algorithm is O(nm).

The typical situation that causes the unbounded competitive ratio for the
Greedy Algorithm in the k-server problem is that where there are two workers
and two tasks on a one dimensional space, a line. The workers are on the left
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and the tasks on the right. The Greedy Algorithm sends the nearest worker to
the first task arriving, then it sends the same worker to the second task arriving.
If the schedule of task alternates between tasks at the same two positions, the
first worker moves between the two tasks frantically while the second one remain
idle. This is not only a situation where the Greedy Algorithm is inefficient, but
also a situation where Greedy is socially unfair. A simple and natural fix is
to randomize the Greedy Algorithm. The Randomized Greedy Algorithm that
we consider chooses the worker to whom a task is assigned with a probability
inversely proportional to the cost of the worker to the task. In the above example,
randomization could eventually give a chance to the second worker to be assigned
a task thus definitely unlocking the initial deadlock.

All these online algorithms are memory-less. Another design direction is, as
usual with online algorithms, to add memory to the algorithm. Here we propose
to devise algorithms that learn and use their knowledge of the distribution of
tasks. For the sake of simplicity and because of space limitations, we do not
discuss the orthogonal issue of incrementally learning the distributions. The
reader can refer to the extensive literature on clustering algorithm and their
incremental versions [17,8]. We consider that we are able to obtain a fairly good
estimation of the distribution of tasks. Namely, we know the number of circular
clusters of tasks, the coordinates of the centers, the radiuses, and the weights.
This knowledge is updated as new tasks arrive. How the knowledge is updated
depends on the incremental clustering or learning algorithm.

The idea that we propose in order to leverage the knowledge of the distribu-
tion is to assign workers to clusters of tasks according to the learned distribution.
For each cluster, a quota of workers is calculated based on the distribution. In
a first algorithm, we proactively distribute the workers to stand on the circles
of the clusters. The workers are therefore on standby, waiting to be assigned a
task. When a change in the distribution is observed, the workers are redeployed
accordingly. However, it may not be necessary to proactively deploy the workers.
In a second algorithm, we assign tasks inside a cluster to workers located out-
side all clusters on demand until the quota of the cluster is reached. These two
algorithms can also mitigate the situation where some workers are overloaded
while some others are starving, thus improve social fairness.

We present two Distribution Aware Algorithms, namely, the Proactive Dis-
tribution Aware Algorithm and the on Demand Distribution Aware Algorithm
in Section 4.1.

4.1 The Distribution Aware Algorithm

The idea of the Distribution Aware Algorithm is to move a sufficient number of
workers who are located outside the clusters to perform tasks requested inside the
clusters (we call this movement DEPLOY), such that the tasks that are frequently
requested inside the clusters can be served by a closer worker.

The algorithm consists of two phases: (i). Estimate this “sufficient number”
(i.e., quota: quoi) of every cluster CLi. (ii). Real assignment based on the quota.
Algorithm 1 gives the outline of the Distribution Aware Algorithm.
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Algorithm 1: The Distribution Aware Algorithm

Input: Set of workers W , a sequence of set of tasks R1, ..., Rτ , distributions
for each time period p1, p2, ...

Output: assignment a1, ..., aτ

1 for each time period tp = 1, 2, ... do
2 /* Acquire distribution information of tasks */
3 CLi: (αi, µi, radiusi) (i = 1, ..., k) ← ptp

4 /* Phase (i). Estimate the quota */
5 for each CLi (i = 1, ..., k) do
6 calculate quoi for each cluster CLi;
7 /* Phase (ii). Assignment */
8 Subroutine 2 (or Subroutine 3)

Phase (i), moving a worker located outside the clusters to perform the tasks
inside the clusters incurs a heavier cost than moving a nearest worker, thus quoi
should not be too large. We set a upper bound of quoi to be the minimum of
a value proportional to the weight of CLi and the number of locations in CLi,
minusing the existing number of workers (i.e., existi) inside CLi. That is,

quoi ≤ min{αi ·m, |CLi|} − existi (2)

|X| is the cardinality of the set X (e.g., |CLi| is the number of locations
inside CLi).

On the other hand, if quoi is insufficiently large, DEPLOY will not be effective,
either. Here is the benefit analysis for the DEPLOY. The benefit of moving quoi
workers to CLi is the cost saved by these quoi workers within CLi minus the cost
of the DEPLOY. We want to maximize the following benefit which is the summed
benefit of all clusters.∑

Dep1,...,Depk

saved cost by Depi − deploy cost of Depi; (3)

Depi ⊆ W (i = 1, ..., k) is the set of DEPLOY workers to cluster CLi, and
Depi∩Depj = ∅ if i 6= j. We want to determine the optimal set {Dep1, ..., Depk}
that maximize Equ.3. However, the “saved cost” and the “deploy cost” is un-
known since we do not know the subsequent tasks. What is more, it is inefficient
to traverse all possibilities of {Dep1, ..., Depk}. Thus, we calculate the benefit of
the DEPLOY of each cluster using the following heuristic and estimation.

We sort the clusters according to their weights αi in descending order, and
estimate the benefit for each cluster as in Equ.4.

BNFi =
|Depi|
|CLi|

· radiusi · αiN tp −
|Depi|∑
j=1

c(NNj , µi) (4)

where |Depi|
|CLi| is the probability that a task in CLi is served by the deployed

worker. radiusi is the estimated cost between two locations in the cluster. With
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N tp being the total number of tasks in this period, we could have the left part of
BNFi being the total estimated “saved cost by Depi”. The right part of BNFi is
the estimated “deploy cost of Depi”, i.e., the cost of moving the nearest |Depi|
workers (i.e., NNj in Equ.4) located outside all clusters to the center of CLi
(i.e., µi). We set quoi to be the value of |Depi| that maximizes BNFi under the
constraint in Equ.2.

Subroutine 2: The Proactive Distribution Aware Algorithm

Input: Set of workers W , a sequence of set of tasks R1, ..., Rτ

Output: assignment a1, ..., aτ

1 Sort the clusters in descending order according to the weight;
2 for each cluster CLi (i = 1, ..., k) do
3 Find the nearest quoi workers to µi located outside all clusters;
4 Move each of the quoi workers to the nearest point on the circle of CLi.

5 for each time step t do
6 Rt ← {rt1, ..., rtnt}; W = {w1, w2, ..., wm};
7 while Rt 6= ∅ do
8 rtj ← Randomly pick a task from Rt;
9 atj ← The nearest worker ∈W to rtj ;

10 Rt ← Rt\{rtj}; W ←W\{atj}
11 Output at;

Phase (ii). Assignment.

The Proactive Distribution Aware Algorithm(Subroutine2). This al-
gorithm firstly sorts the clusters in descending order according to the weight αi
(Line 1). Then, for each cluster CLi, this algorithm proactively moves the near-
est quoi workers (nearest to the center µi) who are located outside all clusters
to the nearest point on the circle of CLi (Line 3,4). Workers are therefore on
standby, waiting to be assigned a task. Finally, assign the tasks at one step in
a random order, move the nearest available worker to perform each task (Line
8-10).

The on Demand Distribution Aware Algorithm(Subroutine3). This
algorithm deploys the workers into the clusters on demand. It assigns the tasks
at one step in a random order. For each task rtj at time step t, if it is located
inside cluster CLtj (that has the quota quotj). If quotj > 0, move the nearest
worker who is located outside all clusters to serve rtj (Line 6). In other cases,
assign rtj to the nearest worker (Line 9).

In phase (i), calculating the quota for each cluster requires sorting workers
with respect to cost, which takes O(mlog(m)). Time complexity of phase (i) is
O(kmlog(m)) for k clusters. In phase (ii), the assignment takes O(nm). Thus,
Time complexity of the Distribution Aware Algorithms is O(kmlog(m) + nm).

Go back to the example of two workers on a line, the Distribution Aware
Algorithms will send the two workers to the two locations of the tasks based on
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Subroutine 3: The on Demand Distribution Aware Algorithm

Input: Set of workers W , a sequence of set of tasks R1, ..., Rτ

Output: assignment a1, ..., aτ

1 for each time step t do
2 Rt ← {rt1, ..., rtnt}; W = {w1, w2, ..., wm};
3 while Rt 6= ∅ do
4 rtj ← Randomly pick a task from Rt;
5 if rtj ∈ CLtj AND quotj > 0 then
6 atj ← The nearest worker ∈W to rtj who is not in any clusters;
7 quotj ← quotj − 1;

8 else
9 atj ← The nearest worker ∈W to rtj ;

10 Rt ← Rt\{rtj}; W ←W\{atj}
11 Output at;

the distribution. So, the cost will be zero afterwards. We do not have theoretical
bounds for the Distribution Aware Algorithms.

5 Performance Evaluation

5.1 Experimental Methodology

We conduct experiments on both real world and synthetic datasets to evaluate
the performance of the three baseline online algorithms, i.e., the Greedy Algo-
rithm, the Randomized Greedy Algorithm and the Work Function Algorithm,
and two Distribution Aware Algorithms, i.e., the Proactive Distribution Aware
Algorithm and the on Demand Distribution Aware Algorithm. For simplicity, we
will name these algorithms as Greedy, Random, WFA, Proactive and onDemand,
respectively, in this section.

The real world dataset “Delivery” consists of records of the delivery failure
packages in Singapore from April 2014 to June 2014. The distribution of those
failed deliveries is presented in Fig.1(a). The color, from white to red, represents
the density of the failed deliveries on the corresponding coordinates. We identify
12 clusters according to this observed distribution. The centers of the clusters
are denoted by black stars in Fig.1(a). We set the radius of each cluster to be
2km and the weight of each cluster to be the density of tasks inside the cluster
between April 2014 and May 2014.

We evaluate the five algorithms on the dataset of June based on the learned
distributions and clusters. The number of tasks is 19k (i.e., n = 19k). Tasks are
all in one time period. The workers are generated uniformly on the space. We
vary the number of workers (i.e., m) and also the number of tasks in one time
step in order to observe the behaviors of the algorithms. Euclidean distance
(i.e., traveled distance) is used to measure the commuting cost between two
locations for all datasets. We use the window version of WFA[15] (i.e., ω-WFA) in



10 Authors Suppressed Due to Excessive Length

the experiments considering the running time. We evaluate the 50-WFA on the
Delivery data where there is 1 task per step and m = {50, 100, 200}. In other
evaluations, we only compare the performances of Greedy, Random, Proactive
and onDemand.

(a) Delivery
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Figure 1. Distributions of the Real and Synthetic Datasets

In order to evaluate the scalability and watch the behaviors of the algorithms,
we generate 3 synthetic datasets named “Dataset1” (Fig.1(b)), “Dataset2” (Fig.1(c))
and “Dataset3” (Fig.1(d)) from Gaussian Mixture Distribution (i.e., GMM) on
a 1000 × 1000 grid space. Fig.1(b)1(c)1(d) show the distributions of the tasks
and the workers in the three synthetic datasets where the red circles represent
the distribution of the workers and the black triangles represent the distribution
of the tasks. Specifically, we use diagonal covariance matrixes for the multivari-
ate Gaussian Distributions, and the variances for the two dimensions are set to
be equal. In this way, each component in the GMM is corresponding to a clus-
ter with the center locating at the mean, the radius equaling to the standard
deviation (σ) of the x-dimension (or y-dimension). In Dataset1, 100k tasks are
generated from a 1-component-GMM. All the tasks are in one time period. Work-
ers are generated from a 3-component-GMM, the centers of which are uniformly
distributed on the space. In Dataset2, there are 2 time periods. In the first time
period, 50k tasks are generated from a 10-component-GMM, the means of which
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are uniformly distributed on the space. One of the components has weight 0.5,
the others have weights 0.056. In the second time period, 10 components with
same means as in the first period evolve all their weights to 0.1. Workers are
generated from a 10-component-GMM that has different means but the same
weights with the clusters of tasks in the first period. In Dataset3, there are 10
time periods. In each time period, 20k tasks are generated from a 1-component-
GMM. The center of this component changes at every time period. Workers are
generated from a 1-component-GMM.

Table 1. Summary of the Synthetic Datasets

n variance # periods # clusters/period Rationale

Dataset1 100k 400 1 1 Worst Case of Greedy

Dataset2 100k 100 2 10 Evolution of Weights

Dataset3 100k 100 10 1 Moving Clusters

The summary of the datasets is in Table 1. We evaluate the performances
of the algorithms by varying the number of workers and the number of tasks in
one step. Each evaluation is averaged over 20 independent random cases.

5.2 Experimental Results on Cost Minimization
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Figure 2. Results of the Delivery Data

Experimental Results on Real Data. Figure 2 shows the experimental re-
sults on the Delivery dataset. Generally, as the number of worker m increases,
the costs by all five algorithms decrease since there are more opportunities to
assign the tasks to close workers when m is larger. Random performs worse than
the other algorithms due to its randomness. The Distribution Aware Algorithms,
Proactive and onDemand, perform better than the baseline memory-less algo-
rithms, onDemand is better than Proactive.

Comparing Fig.2(a), 2(b) and 2(c), we can see that all algorithms perform
better when the number of tasks in one step is smaller. This is because the
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available worker set is larger for each task when there are fewer competitive
tasks in the same time step.

When the number of workers (m) is sufficiently large, all algorithms tend to
have similar performance since there are sufficient number of close workers to
serve each task. As a result, the costs by all algorithms are low.

Experimental Results on Synthetic Data. Figure 3 shows the experimen-
tal results on Dateset1, Dataset2 and Dataset3. Generally, the performance
of Random is poor, and the Distribution Aware Algorithms, Proactive and
onDemand, perform better than the baseline memory-less algorithms, onDemand
is better than Proactive.
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Figure 3. Results of the Synthetic Datasets
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In Fig.3(a)3(b)3(c), Greedy performs poorly when the number of tasks in a
step is small. Because Greedy tends to move a set of workers to the cluster and
let them finish all the tasks in the cluster, which is costly.

When the number of tasks per step increases, the cost by Greedy decreases
since the effect of moving a batch of workers in a step is similar to the effect of
DEPLOY in the Distribution Aware Algorithms which move a set of worker outside
the clusters into the clusters. This observation is contrary to the results in the
Delivery dataset where we observe that costs by all algorithms increase as the
number of tasks per step increases. This is because the benefit of the DEPLOY of
Greedy is counteracted by a heavier cost because of the unavailability of workers
in one step, which results in increasing cost in the Delivery dataset.

In Fig.3(d) and Fig.3(g), 3(h), 3(i), costs by the Distribution Aware Algo-
rithms increase as the number of tasks in a step increases because of the unavail-
ability of workers in one step. In this case, Greedy and the Distribution Aware
Algorithms tend to have similar performance.

The advantage of the Distribution Aware Algorithms is that it spends a heav-
ier cost at the beginning of each time period to deploy a number of workers to
serve the tasks that are frequently requested inside clusters. This deployment
benefits the following sequence of tasks. When the distributions evolves fre-
quently as in Dataset3, the performances of Distribution Aware Algorithms are
similar to Greedy, as shown in Fig.3(g)3(h)3(i), since the benefit of deployment
is counteracted by the heavier cost at the beginning of every time period.

In conclusion, the Distribution Aware Algorithms have a lower cost of as-
signment compared to the baseline algorithms when the tasks are distributed in
clusters.

5.3 Experimental Results on Social fairness

We analyse the social fairness of the four algorithms, Greedy, Random, Proactive
and onDemand, based on the Delivery data with one task per step and a number
of workers varying from 200 to 600. We quantify the workload in two ways: the
number of assigned tasks and the traveled distance, for every worker in the four
algorithms.

Figure 4 shows the number of assigned tasks per worker by the different
algorithms. We can see that Greedy is generally unfair, few workers are assigned
a large number of tasks while most of the other workers remain idle.

This is because Greedy always assigns the tasks to the nearest workers. Some
workers who are initially located close to a cluster will have to finish all the tasks
inside this cluster since they are always the nearest workers. This results in heavy
workload of these workers.

The Distribution Aware Algorithms alleviate this problem by deploying an
appropriate number of workers into each clusters. Thus, we can see from Fig.4
that Proactive and onDemand have smaller gaps between the max-workload and
the min-workload than Greedy. Random is the fairest by construction. Indeed,
every worker has a chance at every time step to be assigned to perform tasks.
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Figure 4. Assigned Number of Tasks of Every Worker
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Figure 5. Traveled Distance of Every Worker

Figure 5 shows the traveled distance per worker under the different algo-
rithms. We can observe similar patterns as in Fig.4. Few workers traveled long
distances under Greedy, while most of the others remain idle. Random is fair,
however, the median cost of Random is higher than that of the other three al-
gorithms. The Distribution Aware Algorithms, Proactive and onDemand, are
relatively fair compared to Greedy, having a more balanced workload.

Clearly, fairness was built-in the design of our two Distribution Aware algo-
rithms. It is remarkable, however, that this can be done at the benefit of a lower
cost as well.

6 Conclusion

In this paper, we study the problem of assigning spatial tasks to crowd workers
in the spatial crowdsourcing scenario. We formalize the assignment cost mini-
mization problem, which is to minimize the cost of moving a set of workers to
complete a sequence of spatial tasks. Then, we present three baseline and two
Distribution Aware algorithms to solve this problem. We analyse the competi-
tiveness of these five algorithms in terms of competitive ratio and social fairness.
In the experiments, we compare the cost and social fairness of the five algo-
rithms. The results show that the Distribution Aware Algorithms outperform
the three baseline algorithms in terms of cost and yield a balanced workload.
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