G. Babu and E. D. Feigelson, Spatial point processes in astronomy, Journal of Statistical Planning and Inference, vol.50, issue.3, pp.311-326, 1996.
DOI : 10.1016/0378-3758(95)00060-7

F. Baccelli and B. Blaszczyszyn, Stochastic Geometry and Wireless Networks: Volume I Theory, Foundations and Trends?? in Networking, vol.3, issue.3-4, pp.249-449, 2010.
DOI : 10.1561/1300000006

URL : https://hal.archives-ouvertes.fr/inria-00403039

A. Barbour, Stein's method and poisson process convergence, Journal of Applied Probability, vol.2, issue.A, pp.175-184, 1988.
DOI : 10.1007/BF00534950

A. D. Barbour and T. C. Brown, Stein's method and point process approximation, Stochastic Processes and their Applications, pp.9-31, 1992.
DOI : 10.1016/0304-4149(92)90073-Y

A. D. Barbour and A. Xia, On Stein's factors for Poisson approximation in Wasserstein distance, Bernoulli, vol.12, issue.6, pp.943-954, 2006.
DOI : 10.3150/bj/1165269145

I. Camilier and L. Deucresefond, Quasi-invariance and integration by parts for determinantal and permanental processes, Journal of Functional Analysis, vol.259, issue.1, pp.268-300, 2010.
DOI : 10.1016/j.jfa.2010.01.007

URL : https://hal.archives-ouvertes.fr/hal-00435496

F. Chazal, B. T. Fasy, F. Lecci, B. Michel, A. Rinaldo et al., Subsampling Methods for Persistent Homology, Proceedings of the 32nd International Conference on Machine Learning, pp.2143-2151, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01073073

L. Hsiao-yun-chen, Poisson approximation for dependent trials. The Annals of Probability, pp.534-545, 1975.

L. Coutin and L. Decreusefond, Stein's method for Brownian approximations, Communications on Stochastic Analysis, vol.7, issue.3, pp.349-372, 2013.
DOI : 10.31390/cosa.7.3.01

D. Cox and V. Isham, Point processes, 1980.

D. J. Daley and D. , An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods, 2003.

L. Decreusefond, Wasserstein Distance on Configuration Space, Potential Analysis, vol.18, issue.1, pp.283-300, 2008.
DOI : 10.1007/978-1-4612-1236-2

URL : https://hal.archives-ouvertes.fr/hal-00160002

L. Decreusefond, I. Flint, N. Privault, and G. L. Torrisi, Determinantal Point Processes, Stochastic Analysis for Poisson Point Processes, pp.311-342, 2016.
DOI : 10.1214/13-SSY109

URL : https://hal.archives-ouvertes.fr/hal-01815145

L. Decreusefond, I. Flint, and A. Vergne, A note on the simulation of the Ginibre point process, Journal of Applied Probability, vol.3, issue.04, pp.1003-1012, 2015.
DOI : 10.1111/rssb.12096

URL : https://hal.archives-ouvertes.fr/hal-02286806

L. Decreusefond, A. Joulin, and N. Savy, Upper bounds on Rubinstein distances on configuration spaces and applications, Communications on Stochastic Analysis, vol.4, issue.3, pp.377-399, 2010.
DOI : 10.31390/cosa.4.3.05

URL : https://hal.archives-ouvertes.fr/hal-00347899

L. Decreusefond, M. Schulte, and C. Thle, Functional Poisson approximation in Kantorovich-Rubinstein distance with applications to U-statistics and stochastic geometry. The Annals of Probability, pp.2147-2197, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01010967

L. Decreusefond, A. Vasseur, and S. Zuyev, Asymptotics of discrete stable point processes, 2017.

P. Del, M. , and J. Tugaut, On the stability and the uniform propagation of chaos properties of Ensemble Kalman-Bucy filters. The Annals of Applied Probability, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01593877

N. Deng, W. Zhou, and M. Haengii, The Ginibre Point Process as a Model for Wireless Networks With Repulsion, IEEE Transactions on Wireless Communications, vol.14, issue.1, pp.107-121, 2014.
DOI : 10.1109/TWC.2014.2332335

URL : https://doi.org/10.1109/twc.2014.2332335

C. Anthony, T. C. Gatrell, P. J. Bailey, B. S. Diggle, and . Rowlingson, Spatial Point Pattern Analysis and Its Application in Geographical Epidemiology, Transactions of the Institute of British Geographers, vol.21, issue.1, pp.256-274, 1996.

H. Georgii and H. J. Yoo, Conditional Intensity and Gibbsianness of Determinantal Point Processes, Journal of Statistical Physics, vol.36, issue.3, pp.55-84, 2005.
DOI : 10.1017/S0027763000008412

URL : http://www.mathematik.uni-muenchen.de/~georgii/papers/giiyoo.pdf

J. Ginibre, Statistical Ensembles of Complex, Quaternion, and Real Matrices, Journal of Mathematical Physics, vol.6, issue.3, pp.440-449, 1965.
DOI : 10.1063/1.1704008

A. Goldman, The Palm measure and the Voronoi tessellation for the Ginibre process, The Annals of Applied Probability, vol.20, issue.1, pp.90-128, 2010.
DOI : 10.1214/09-AAP620

URL : https://doi.org/10.1214/09-aap620

J. Gomez, A. Vasseur, A. Vergne, L. Decreusefond, P. Martins et al., A Case Study on Regularity in Cellular Network Deployment, IEEE Wireless Communications Letters, vol.4, issue.4, pp.421-424, 2015.
DOI : 10.1109/LWC.2015.2431263

URL : https://hal.archives-ouvertes.fr/hal-01145527

M. Haenggi, Stochastic Geometry for Wireless Networks
DOI : 10.1017/CBO9781139043816

J. B. Hough and M. Krishnapur, Yuval Peres, and Balint Virag. Determinantal Processes and Independence. Probability Surveys, pp.206-229, 2006.

O. R. Kallenberg and . Measures, Akademie-Verlag, 1983.

O. Kallenberg, Foundations of moder probability. Probability and its applications, 1997.

G. Last, G. Peccati, and M. Schulte, Normal approximation on Poisson spaces: Mehlers formula, second order Poincar inequalities and stabilization. Probability Theory and Related Fields, pp.3-4667, 2016.
DOI : 10.1007/s00440-015-0643-7

URL : http://arxiv.org/pdf/1401.7568

F. Lavancier, J. Mller, and E. Rubak, Determinantal point process models and statistical inference, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.4, issue.4, pp.853-877, 2015.
DOI : 10.1007/978-1-4612-4628-2

URL : https://hal.archives-ouvertes.fr/hal-01241077

. Dang-zheng, Y. Liu, and . Wang, Universality for Products of Random Matrices I: Ginibre and Truncated Unitary Cases, International Mathematics Research Notices, issue.11, pp.20163473-3524, 2016.

O. Macchi, The coincidence approach to stochastic point processes, Advances in Applied Probability, vol.271, issue.01, pp.83-122, 1975.
DOI : 10.1063/1.1666287

K. Matthes, J. Kerstan, and J. Mecke, Infinitely Divisible Point Processes, 1978.

I. Nourdin and G. Peccati, Normal approximations with Malliavin Calculus: From Stein's method to universality, 2012.
DOI : 10.1017/CBO9781139084659

F. Papangelou, The conditional intensity of general point processes and an application to line processes, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.165, issue.3, pp.207-226, 1974.
DOI : 10.1007/BF00533242

G. Reinert, Three general approaches to Stein's method. An introduction to Stein's method, pp.183-221, 2005.
DOI : 10.1142/9789812567680_0004

D. Ruelle, Statistical mechanics: Rigorous results, 1969.
DOI : 10.1142/4090

D. Schuhmacher and K. Stucki, Gibbs point process approximation: totoal variation bounds using Stein's method. The Annals of Probability, pp.1911-1951, 2014.

D. Schuhmacher and A. Xia, A new metric between distributions of point processes, Advances in Applied Probability, vol.12, issue.03, pp.651-672, 2008.
DOI : 10.1214/105051604000000684

M. Schulte and C. Thle, Distances Between Poisson k -Flats, Methodology and Computing in Applied Probability, vol.9, issue.2, pp.311-329, 2014.
DOI : 10.1007/BF00580825

H. Shih, On Stein??s method for infinite-dimensional Gaussian approximation in abstract Wiener spaces, Journal of Functional Analysis, vol.261, issue.5, pp.1236-1283, 2011.
DOI : 10.1016/j.jfa.2011.04.016

T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes, Journal of Functional Analysis, vol.205, issue.2, pp.414-463, 2003.
DOI : 10.1016/S0022-1236(03)00171-X

A. Soshnikov, Determinantal random point fields, Russian Mathematical Surveys, vol.55, issue.5, pp.923-975, 2000.
DOI : 10.1070/RM2000v055n05ABEH000321

C. Stein, A bound for the error in the normal approximation to the distribution of a sum of dependent random variables, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, pp.583-602, 1972.

D. Stoyan and A. Penttinen, Recent Applications of Point Process Methods in Forestry Statistics, Statistical Science, vol.15, issue.1, pp.61-78, 2000.

C. Villani, Optimal Transport: Old and New, 2008.
DOI : 10.1007/978-3-540-71050-9

L. and T. Paristech,