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Abstract

Graph signal processing (GSP) is a framework that enables the generalization

of signal processing to multivariate signals described on graphs. In this paper,

we present an approach based on Graph Fourier Transform (GFT) and ma-

chine learning for the analysis of resting-state functional magnetic resonance

imaging (rs-fMRI). For each subject, we use rs-fMRI time series to compute

several descriptive statistics in regions of interest (ROI). Next, these measures

are considered as signals on an averaged structural graph built using tractogra-

phy of the white matter of the brain, defined on the same ROI. GFT of these

signals is computed using the structural graph as a support, and the obtained

feature vectors are subsequently benchmarked in a supervised learning setting.

Further analysis suggests that GFT using structural connectivity as a graph

and the standard deviation of fMRI time series as signals leads to more ac-

curate supervised classification using a world-wide multi-site database known

as ABIDE (Autism Brain Imaging Data Exchange) when compared to several

statistical metrics. Moreover, the proposed approach outperforms several ap-

proaches, based on using functional connectomes or complex functional network

measures as features for classification.

Keywords: Graph Signal Processing, Machine Learning, Resting-State

Analysis, Neuroimaging, Classification

Preprint submitted to Journal of Artificial Intelligence in Medicine September 28, 2019



1. Introduction

Functional magnetic resonance imaging (fMRI) is a noninvasive and safe

imaging technique for measuring and mapping brain activity, and is commonly

used in the field of cognitive neurosciences. However, the analysis of fMRI data

is a major challenge due to a high sensitivity to noise, a large number of di-5

mensions for few observations per subject, or different acquisition protocols [1].

Recently, there has been an increasing interest in the application of multivariate

analysis and machine learning to understand complex properties of brain net-

works and to assist diagnosis in brain imaging data [2, 3]. However, few analysis

approaches take into account both the multivariate aspect and the connectivity10

features of the brain, such as a structural graph estimated using white matter

tractography, or functional connectivity graph computed using temporal covari-

ation between neural activity time series.

As a potential answer to this challenges, Graph Signal Processing (GSP), which

is an emerging sub-field of signal processing, takes into account the underlying15

graphical structure of multivariate data and aims to generalize classical signal

processing techniques, such as filtering, convolution, or translation to irregular

graph domains [4]. According to spectral graph theory [5], a Fourier transform

can be defined on graphs from the eigendecomposition of the graph’s Laplacian

operator. Thus, GSP can be used to provide a spectral representation of signals20

defined on a graph, through the so-called Graph Fourier Transform operator

(GFT). Therefore, GSP appears as an ideal framework to analyze fMRI data,

as it enables to consider brain activity defined on a brain connectivity graph [6].

On the other hand, several statistical features, such as, the mean and the stan-

dard deviation (STD) of multivariate signals have previously been used to com-25

pute a vector with discriminatory (spatial) features for disease classification [7].

Thus, in this work, we evaluate a GSP-based approach for the analysis and the

classification of neuroimaging data. We introduce a method based on resting

state functional magnetic resonance imaging (rs-fMRI), consisting in measur-

ing spontaneous brain activity of subjects at rest. Rs-fMRI is a very popular30
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method, due to the simplicity of its protocol, the wide availability of data and

analysis methods, and the large body of evidence regarding its functional and

clinical relevance [8, 9]. In our study, we assess whether the combination of

an average structural graph with several statistical metrics on rs-fMRI signals

(such as STD) can extract meaningful features for the supervised classification35

of patients with autism spectrum disorder (ASD).

Related work: Several approaches for the classification of ASD patients us-

ing rs-fMRI have been proposed in the literature [3, 10–16]. Most approaches

attempted to identify functional connectivity patterns that can discriminate pa-

tients from healthy subjects using rs-fMRI. In [3], the authors obtained pairwise40

functional connectivity measurements from a lattice of 7266 regions of interest

covering the gray matter for each subject. Then, a leave-one-out classifier was

evaluated on these connections, which were grouped into multiple bins. An

accuracy of 60% was obtained for whole brain classification using the Autism

Brain Imaging Data Exchange (ABIDE) datasets. In [10], authors presented a45

mathematical framework based on Riemannian geometry and kernel methods

that can be applied to connectivity matrices for the classification of ASD. Their

approach achieved an accuracy value of 60.76 %. however, it is validated on a

small dataset of 79 subjects: 37 TC and 42 pathological subjects. In addition,

authors in [11], developed a diagnosis approach, in which, the correlation ma-50

trices computed from rs-fMRI time-series data, were considered as features and

they were entered into a probabilistic neural network (PNN) classifier to sepa-

rate ASD from TC. The correlation matrices of 640 subjects were classified as

ASD or TC with approximately 90% accuracy using the PNN algorithm. Never-

theless, only subjects under 20 years of age were included in their study. In [12],55

authors proposed a diagnosis framework for ASD, which is based on the com-

putation of Pearson correlation-based functional connectivity network of each

cluster. The clusters are obtained by the decomposition of rs-fMRI time series

into distinct clusters with similar spatial distribution of neural activity. Their

results achieved an accuracy rate of 71% and their framework was validated on60

several selected subjects from a subset of ABIDE database, i.e. the New York
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University (NYU) Langone Medical Center. This dataset contains more than

170 subjects, however, the authors included only 92 selected subjects in their

study. Moreover, authors in [13], investigated several pipelines that extract the

most predictive biomarkers from the data by building participant-specific con-65

nectomes from functionally-defined brain areas. These connectomes are then

compared across participants to learn patterns of connectivity that differentiate

typical controls from ASD patients. The best pipeline lead to 67% prediction

accuracy on the full ABIDE database. In [14], authors investigated patterns of

functional connectivity that objectively identify ASD participants from rs-fMRI70

data using deep learning algorithms. Their results improved the state-of-the-art

by achieving 70% accuracy in identification of ASD versus control patients in

the ABIDE dataset. A novel metric learning method to evaluate distance be-

tween graphs that leverages the power of convolutional neural networks, while

exploiting concepts from spectral graph theory to allow these operations on ir-75

regular graphs is proposed in [15]. The authors applied the proposed model

to functional brain connectivity graphs from the ABIDE database. Their ex-

perimental results show that their method can learn a graph similarity metric

tailored for a clinical application, improving the performance of a simple k -nn

classifier by 11.9% compared to a traditional distance metric and a classifica-80

tion score of 62.9% was obtained for all the sites. In addition, authors in [16],

introduced a new biomarker extraction pipeline for ASD that relies on the use

of graph theoretical metrics of fMRI-based functional connectivity and machine

learning algorithms. Their results suggest that measures of centrality provide

the highest contribution to the classification power of a model for the >30 years85

age group, achieving an accuracy, sensitivity, and specificity of 95, 97, and 95%,

respectively. However, their model is an age-dependent and in this age-range,

there are only 51 subjects. Besides, the ABIDE dataset contains more than

eight hundred subjects with a large age range (5− 65).

Contributions: In this paper, we propose a novel multimodal analysis ap-90

proach for brain imaging data, as shown in Figure 1. This analysis method

combines GFT on a structural graph, and several statistical metrics of rs-fMRI
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time series defined on the same brain regions than the structural graph, hence

using two different imaging modalities : rs-fMRI and structural graph based

on white matter tractography. The proposed approach comprises four stages.95

Firstly, the Glasser atlas is used for brain parcellation [17] to extract the rs-

fMRI time series of each subject. These time series are summarized by several

statistical metrics, such as the temporal average or STD. Secondly, the resulting

statistical measures are projected on an average structural graph of healthy sub-

jects from the Human Connectome Project (HCP) dataset using GFT. Then,100

in order to select the most informative features for classification, a univariate

feature selection is performed using an analysis of variance (ANOVA). Finally,

in order to keep the research finding more objective, two different classifiers are

used to test the effectiveness of the proposed analysis method, namely a support

vector machine (SVM) with linear kernel and a logistic regression classifier.105

The proposed approach provides a different insight from previous methods [3,

13–16], namely:

• The proposed method does not exploit functional connectivity matrices

directly from rs-fMRI, but rather relies on descriptive statistics of time se-

ries, combined with spatial and anatomical information using mean struc-110

tural connectivity of several healthy subjects and GFT;

• Our approach restores informative features related to neuro-psychiatric

disease, such as ASD, as exemplified by statistically robust gains in clas-

sification metrics when compared to other feature extraction methods,

including functional connectivity and graph theoretical metrics;115

• Taking into account the computational load, the proposed approach is less

demanding when compared to functional connectomes-based approaches

for the analysis of rs-fMRI brain data, as it is based only on the compu-

tation of statistical metrics;

• The proposed approach decreases the amount of data needed to store120

patient imaging data history, Thus, each subject can be defined by several
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resulting features after their transformation using GFT defined on the

same brain regions;

• Our method performs efficient dimensionality reduction, by using a sta-

tistical criterion to select the most predictive features.125

• We extend our previous results on a small subset of ABIDE, i.e. NYU Lan-

gone Medical Center [18], showing that the proposed analysis framework

performs well in the discrimination task between ASD and TC subjects,

and outperforms most prior work on this subset.

• Finally, the proposed method is validated on a large world-wide multi-site130

database (ABIDE) in which different methods of imaging acquisition were

used [19].

2. Materials and Methods

2.1. Database

The data used in this study were collected from the Autism Brain Imaging135

Data Exchange (ABIDE) datasets.1. ABIDE I consists of 1112 subjects compris-

ing 539 ASD patients and 573 Typical Controls (TC)[19]. For easy replication,

this database has been preprocessed by the Configurable Pipeline for the Analy-

sis of Connectomes (C-PAC) [20]. C-PAC uses several preprocessing techniques,

such as, skull striping, slice timing correction, motion correction, global mean140

intensity normalization, nuisance signal regression, band-pass filtering (0.01-

0.1Hz) and registration of fMRI images to standard anatomical MNI space.

The selection of the data is based on the results of quality visual inspection by

three experienced clinicians who checked for largely incomplete brain coverage,

high movement peaks, ghosting and other scanner artifacts. This yielded 871145

subjects out of the initial 1112, consisting of 403 individuals suffering from ASD

1See http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html for specific infor-

mation.
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Figure 1: The graphical framework of the proposed approach.
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and 468 TC. Due to the use of different acquisition protocols, the data is very

different from one international site to another.

2.2. Regions of interest and Time-series extraction

The proposed approach is based, firstly, on regional time series extraction150

from brain parcellations. We used the Glasser parcellation [21], generated using

multimodal data from the Human Connectome Project (HCP), totalizing in

360 regions. Thus, the time series of rs-fMRI brain imaging data were extracted

according to 360 regions of interest (ROI) for each subject. Importantly, the

same ROI are defined in the structural graph that is used to establish GFT.155

2.3. Graph Signal Processing and Graph Fourier Transform on Structural Graph

In this work, we are interested in the analysis of rs-fMRI signals on an

averaged structural graph. Let us first define an undirected, connected, weighted

and symmetric graph G = {V, E ,W}. The graph is characterized by a finite set

of vertices V indexed from 1 to N:

V = {v1, ..., vN} (1)

as well as a set of edges E in V × V, and a weighted adjacency matrix W, such

that Wij ∈ R+ denotes the weight of the edge (vi, vj).

The combinatorial graph Laplacian of a graph is defined by [6, 22]:

L = D−W (2)

where D is the diagonal matrix of degrees defined by ∀i : Dii =
∑

j Wij .

Thus, the normalized Laplacian of graph is defined by [6]:

Ln = D−1/2L D−1/2 (3)

As Ln is symmetric and real-valued matrix, it can be factorized using its eigen-

vectors as:

Ln = VΛV> (4)
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where V is the orthonormal matrix whose ith column is the eigenvector of Ln,

V> is its transposed matrix, and Λ is the diagonal matrix whose diagonal

elements are the corresponding eigenvalues, such that Λii = λi of Ln.

In the context of GSP, we define signals x as vectors in RN . The spectral

representation of signals defined on the graph G can be provided using GFT [4]:

x̂ = V>x (5)

Columns of V can be interpreted as Fourier modes [4] and are relevant to

describing signals with respect to typical propagation modes on the graph.

In this paper, we consider a graph whose nodes corresponding to 360 ROIs of

the Glassers multimodal cortical atlas from HCP [21], with edges and weights are160

estimates of structural connectivity strength from several HCP healthy subjects,

using white matter tractography techniques [23]. More precisely, the structural

graph was obtained by averaging all subjects structural matrices. We defined

GFT using the normalized Laplacian of this averaged structural graph. In the

following sections, we setup a supervised classification task that compare several165

statistical measures that are subsequently transformed using GFT.

2.4. Feature extraction and Feature selection

We extracted several features with and without the use of GFT, based on

descriptive statistics of the temporal rs-fMRI signals. Namely, we compared

the STD, the mean, the variance and a high-order moment, i.e. the kurtosis170

of rs-fMRI time series. Next, we computed the projection of the same features

on the structural graph of several healthy subjects in the graph Fourier domain

using GFT. Moreover, for comparison purposes with the state of the art, we also

extracted connectivity features via the covariance estimation of the tangent ma-

trix [13, 24, 25], and we use the lower triangular part of the resulting functional175

connectivity (FC) matrix. Functional connectivity (FC) provides an index of the

level of co-activation of brain regions based on the time-series of rs-fMRI brain

imaging data. Finally, we also used the FC matrix to compute three complex
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network measures known to be of interest in ASD research, namely eigenvec-

tor centrality (EC), node strength (NS) and clustering coefficient (CC) [16, 26].180

These complex-graph network modeling approaches are seldom combined with

supervised learning. However, they could be relevant to identify brain sub-

systems associated with ASD [26]. Thus, we obtain a total of twelve feature

vectors, denoted by STD, STD+SG, Mean, Mean+SG, Var, Var+SG, Kurtosis,

Kurtosis+SG, FC, EC, NS and CC, respectively. These feature vectors are of185

dimension N , except FC which is the size of the lower triangular connectivity

matrix, thus its size is N(N−1)
2 for each subject.

The main aim of this work is to present a novel modelling time series approach

applied on brain imaging. In order to validate the effectiveness and the robust-

ness of the proposed method in the analysis of rs-fMRI, we tested it on the190

classification task for the diagnosis of ASD, basing on a widely used pipeline

for feature selection and for classification [13, 25]. Thus, in order to select the

best informative features and to remove non-informative features for classifi-

cation, univariate feature selection is performed by ANOVA. This technique is

based on the analysis of sample’s variance across the two categories. Features195

that explain the largest proportion of the variance are retained. We tested the

selection from 10 up to 360 features with a step = 10 using this technique.

2.5. Cross-validation, classification and statistical analysis

We process the features selected by ANOVA in a cross-validated super-

vised classification setting using the most commonly used classifiers for these200

datasets, i.e. l2-penalized support vector classification (SVC) with a linear ker-

nel (C=0.012) and l2-regularized logistic regression (LR) classifiers (solver=lbfgs3) [13,

25]. Different classification metrics, i.e. accuracy (Acc), sensitivity (Sen) and

specificity (Spe) are estimated using an intra-site cross-validation (CV) in or-

der to reduce the site-related variability. This CV scheme is based on stratified205

2C is the penalty parameter of the error term
3lbfgs is the Broyden-Fletcher-Goldfarb-Shanno optimization algorithm
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shuffle split cross-validation, which splits participants into training and test sets

while preserving the ratio of samples for each site and condition. We used 80%

of the participants for training and the remaining ones for testing. Importantly,

feature selection was also performed within this cross-validated loop.

Finally, we performed robust statistical evaluations and comparisons be-210

tween the different feature vectors to test whether the classifiers were able to pre-

dict significantly better than chance. We estimate the chance level of all trained

classifiers using bootstrapping by calculating a permutation test score [27], i.e.

repeating the classification procedure after randomizing the labels. This per-

mutation test score provides an indication whether the trained classifier is likely215

predicting at chance level.

2.6. Visualization of cross-validated selected features

We attempted to study qualitatively the stability and interpretability of the

method, by visualizing feature selection with respect to cross-validation. We

calculated a vector of ratios that averages the number of times each feature is220

selected across folds. We then visualized these ratio back on the brain using

the spatial extents of the ROI. In the case of features obtained using GFT, we

applied the inverse GFT to the vector of ratios before visualization. The appli-

cation of inverse GFT enables the visualization of the contribution of all regions

in the atlas, as opposed to the other features, for which only selected ROI are225

visualized.

3. Results and Discussion

3.1. Supervised Classification of ASD

ABIDE datasets are a heterogeneous data, which come from 17 international230

sites with no prior coordination, that is a typical clinical application setting.

Thus, discriminating between ASD and TC individuals is a challenging task.

Figures 2 and 3 reveal the averaged classification rates for the proposed method

11



across CV-folds, as a function of the number of features when compared to dif-

ferent statistical measures, FC and several complex network measures using LR235

and SVC classifiers. The red markers, in the different approaches, reveals if the

classification metrics were statistically significant (p < 0.01) after a permutation

test using 100 permutations. The blue markers reveals the non significance of

the classification metrics for the different methods. Out of the different statis-

tical metrics, several of them turned out to yield non-significant classification240

for all or most number of selected features, such as the mean of rs-fMRI. This

might be justified by the fact that there are relatively short time series included

in ABIDE datasets (typically 5-6 minutes per participant). However, features

with STD+SG yielded classifiers which are highly significantly above chance

level, even when selecting as few as 10 features.245

Figure 4 shows the distribution of 100 classification scores obtained by permut-

ing labels, estimating true chance level and demonstrating that the observed

accuracy is highly significantly above chance level (p < 0.01). In the following

discussion, we will only consider approaches that lead to classifiers that are able

to predict better than chance level according to this permutation scheme.250

Tables 1 and 2 show classification metrics for all methods that predicted bet-

ter than chance level. Interestingly, feature vectors with STD+SG outperform

those obtained using other statistical metrics, functional connectivity or several

complex-graph functional network modeling approaches.

Classification accuracies of 60.14% (55.92% for sensitivity, 67.77% for speci-255

ficity, permutation test p < 0.01, 100 times) and 60.71% (56.30% for sensitivity,

68.03% for specificity, permutation test p < 0.01, 100 times) were achieved

by the STD+SG approach when the best 160 and 180 features are selected

(ANOVA) using LR and SVC classifiers. For instance, there is an accuracy

gain up to 4.4% and 4.31% using LR and SVC, respectively, when comparing260

STD+SG approach with the remaining statistical methods and their projec-

tions. Moreover, comparing STD+SG with FC and several complex functional

network measures, there is an accuracy gain up to 5.95% and 6,46%, using the

different classifiers.
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Approaches Acc (%) Sen (%) Spe (%)

STD 57.68±0.044 55.74±0.047 77.76±0.052

STD+SG 60.14±0.035 55.92±0.046 67.77±0.042

Var 57.91±0.040 54.26±0.045 81.38±0.066

Var+SG 58.46±0.032 54.57±0.052 69.68±0.043

Kurtosis 57.22±0.033 44.56±0.064 87.55±0.080

Kurtosis+SG 55.74±0.029 35.92±0.062 87.82±0.044

FC 59.34±0.032 53.27±0.055 66.70±0.054

EC 56.40±0.030 49.01±0.058 66.06±0.048

NS 54.19±0.025 49.01±0.058 66.06±0.065

CC 56.91±0.040 52.53±0.041 68.77±0.054

Table 1: Maximum classification rates of the different approaches for ABIDE database using

LR classifier (max ± STD).

Overall, the results of the present study suggest that a first-order statistical265

feature [7], such as the standard deviation of rs-fMRI time series extracted us-

ing Glasser parcellation may be a discriminating feature for the classification

of a mental disorder like autism. In addition, projecting this statistical metric

on the structural graph of a several healthy subject can help discriminate ASD

subjects from TC, as indicated by classification metrics. Thus, these findings270

suggest that a multimodal neuroimaging approach may lead to greater accuracy

than a single modality, such as functional connectome alone.

Furthermore, it is worth noting that the proposed approach is different from pre-

vious methods [3, 13–16] in the classification of autism using rs-fMRI, in which

the most popular approach is to exploit the whole functional connectivity matrix275

in the framework of functional connectome-based classification pipeline.

3.2. Comparison with the state of the art

The proposed rs-fMRI analysis method was compared with several approaches

for an ASD diagnosis from the literature, as shown in Tables 3 and 4. The com-
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Figure 2: Left: Average accuracy, sensitivity and specificity across 20 CV-folds, as a function

of number of features and statistical approaches using LR classifier. Right: Average accuracy,

sensitivity and specificity across 20 CV-folds, as a function of number of features when com-

pared to FC and complex network measures approaches using LR classifier. Red (resp. blue)

markers indicate classification significantly above chance level (resp. no better than chance) .
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Figure 3: Left: Average accuracy, sensitivity and specificity across 20 CV-folds, as a func-

tion of number of features and statistical approaches using SVC classifier. Right: Average

accuracy, sensitivity and specificity across 20 CV-folds, as a function of number of features

when compared to FC and complex network measures approaches using SVC classifier. Red

(resp. blue) markers indicate classification significantly above chance level (resp. no better

than chance) . 15
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Figure 4: Permutation scores of the STD+SG approach and observed classification score

(accuracy), using 100 permutations for 180 best selected feature using ANOVA.

Approaches Acc (%) Sen (%) Spe (%)

STD 60.11±0.033 55.55±0.041 78.61±0.047

STD+SG 60.71±0.034 56.30±0.051 68.03±0.046

Var 59.60±0.037 52.47±0.038 82.50±0.066

Var+SG 59.09±0.034 53.21±0.047 71.17±0.044

Kurtosis 56.4±0.021 30.25±0.069 89.25±0.076

FC 59.31±0.040 54.44±0.045 64.68±0.049

EC 56.48±0.026 49.81±0.052 66.81±0.049

NS 54.25±0.029 48.33±0.044 48.33±0.044

CC 57.31±0.038 51.35±0.047 68.24±0.048

Table 2: Maximum classification rates of the different approaches for ABIDE database using

SVC classifier with linear kernel (max ± STD).
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parison is based on three criteria, i.e. the number of subjects, number of features280

used for the classification and the resulting accuracy values. Taking into account

more than 870 subjects from ABIDE database, the proposed approach might

be comparable with the studies in [3, 13, 15], although, we did not use the

optimal pipeline for feature selection and classification. These differences in

feature selection/classification algorithms might account for the differences in285

classification accuracy between the studies. However, in the studies [11], only

subjects under 20 years of age were included in their study and their model is

an age-dependent.

Moreover, when using the biggest subset from the full ABIDE, such as the data

from the NYU Langone Medical Center site only [18], the proposed approach290

outperforms the state of the art methods, such as in [3, 10, 14]. Specifically,

when comparing to [14], our proposed method is able to outperform recent

methods based on more fashionable techniques such as deep learning applied

on hundreds of subjects. The slight difference in the accuracy value with [12],

may be justified by the difference in the number of subjects for the same NYU295

dataset. Thus, these results were required to be validated in the whole dataset

using all samples.

However, it should be noted that the accuracy value of the multisite sample, i.e.

the whole ABIDE database was smaller than for the monosite sample, i.e. NYU

dataset. This can be justified by several factors, such as the heterogeneities300

in scanning protocols, called site effects, imaging sequences, acquisition param-

eters, and subject populations [28]. Such heterogeneities will definitely limit

the sensitivity for detecting abnormalities induced by ASD, resulting in a drop

in accuracy value from monosite to multisite data. This commonly motivates

researchers to limit the number of sites included in their analyses at the cost of305

sample size.

In a nutshell, these tables reveal the reproducibility and generalizability of our

proposed framework, which may work on small and even big databases, as exem-

plified by statistically robust gains in the classification metrics. However, from

a methodological point of view, our main aim of this study is to present a novel310
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Approach N. of subjects N. of features Accuracy (%)

STD+SG with SVC 871 180 60.71

Nielsen et al. 2013 [3] 964 7266 60

Iidaka et al. 2015 [11] 640 90 90

Ira Ktena et al. 2017 [15] 871 128 62.9

Abraham et al. 2017 [13] 871 84 66.9

Table 3: Comparison of different approaches for classification of the ABIDE database.

Approach N. of subjects N. of features Accuracy (%)

STD+SG with SVC [18] 172 100 70.36

Nielsen et al. 2013 [3] 179 7266 65

Dodero et al. 2015 [10] 79 264 60.76

Wee et al. 2016 [12] 92 116 71

Heinsfeld et al. 2018 [14] 175 19,900 66

Table 4: Comparison of different approaches for classification of a subset of the ABIDE

dataset.

modelling time series approach applied on rs-fMRI brain imaging, nor the iden-

tification of biomarkers for ASD using intrinsic functional brain connectivity, as

in [3, 10–16]. Moreover, the analytic procedure employed in the present study

represents an entirely hypothesis-free, GSP-based approach and we provide our

analysis code for replicability (see section Data and Code Availability).315

3.3. Visualizations of features

Figure 5 depicts a visualization of 50 best features selected with ANOVA,

averaged over folds. Using features from CC, STD and Var, many ROIs are

consistently selected across folds as indicated by ratios close to 1, for example

the left inferior temporal cortices, right anterior and posterior cingulate cortices.320

Notably, the spatial reconstruction of selected features in the graph Fourier

domain, estimated using inverse GFT, reveals whole brain patterns that involve
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all 360 ROIs. These patterns are similar for STD+SG and V ar+SG, and partly

overlap with the spatial locations of ratios obtained with the other features

(e.g. left inferior temporal cortex), while adding other ROIs such as the left325

and right precentral gyri. These regions may be relevant for diagnosis of ASD,

as reported in previous studies [12, 13]. This visualization provides qualitative

evidence that the accuracy boost obtained using GFT might be explained by the

efficient combination of whole brain patterns with only a fraction of features,

which results in an efficient feature selection strategy.330

Clustering Coefficient STD STD + SG Var Var + SG

0
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Figure 5: Spatial distributions of ratios (%) (respectively inverse GFT of ratios for STD+SG

and Var+SG) over 20 folds of the 50 best selected features using ANOVA. Rows correspond

to different views of the cortical surface, namely left lateral, left medial, right lateral and right

medial views.

3.4. Limitations and future directions

The main limitation of this study work is probably that we focus only on

Glasser brain parcellations, which is generated using multimodal data, to ex-

tract regional time series and to build the structural graph. In future studies,

analyses using another kind of parcellations may be of interest and should be335

compared to replicate the accuracy of classification, as the choice of parcella-

tion has previously been benchmarked as an important source of variability for

classification [13].
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Besides, while we used the most popular methods for classification in this

database, it is likely that its findings regarding optimal pipeline decisions will340

carry over to other aggregate samples, as well as more homogeneous samples.

Future studies may wish to validate this point, by extending this approach to

larger and more homogeneous samples. Moreover, as one obvious source of

heterogeneity in ASD is the gender [29], the results may be disproportionately

skewed. Thus, future research should take into consideration this confound-345

ing variable to reduce the effects of heterogeneity for improving classification

performances.

Another limitation of our work is the fact that we computed graph signals

from time series using the standard deviation, but the resulting signal to noise

ratio is sensitive to the length of the time series. As a consequence, a promising350

direction would be to address this issue by considering other statistical esti-

mates.

Next, we limited our experiments to straightforward supervised learning

methods with few parameters, namely support vector machines and logistic

regression. Recent development in machine learning have witnessed spectacular355

progress due to deep learning architectures, which are based on a much larger

number of parameters. While other authors have proposed deep learning based

approaches to classify ASD [14], we suggest that the approach proposed in the

current paper could be combined with deep learning on graphs [30], as our

method already extracts relevant features by exploiting the graphs using GFT.360

4. Conclusion

In the current study, we present a novel and efficient approach for the analy-

sis of rs-fMRI. More specifically, this work has introduced the application of GSP

on several descriptive statistics, such as the temporal variability of rs-fMRI. In

order to validate the effectiveness and the robustness of the proposed method,365

we tested its ability in distinguishing between healthy and ASD patients. Fur-

ther analysis demonstrated that this multimodal analysis approach can improve
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the classification performances, despite needing few parameters. Thus, the gen-

eral trend of our findings reveals that the analysis of rs-fMRI data may not

mainly based on brain functional connectomes approaches, while incorporating370

structural connectivity together with temporal variability may result in a gain

in predictive power.

Data and code availability

We share the resulting time-series from Glasser atlas and the scripts to re-

produce the classification results and the visualizations in: https://github.375

com/AbdelbassetBrahim/GSP-applied-on-ASD-classification. For the im-

plementation of the different machine learning methods in this paper, we rely

on efficient implementations open-source scientific computing packages using

Python 3.7. For classification, cross-validation and selection methods, we rely

on the scikit-learn library [31] v0.20.1. For downloading the dataset, building380

the connectivity measures and brain visualization, we use Nilearn v0.5.2 [32],

while matplotlib is used for generating other figures. Finally, all graph signal

processing was done using pygsp package v0.5.1.
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