G. Varoquaux and B. , Thirion, How machine learning is shaping cognitive neu-390 roimaging, GigaScience, vol.3, issue.1, p.28, 2014.

D. S. Bassett and O. Sporns, Network neuroscience, vol.20, issue.3, 2017.

J. A. Nielsen, B. A. Zielinski, P. T. Fletcher, A. L. Alexander, N. Lange et al., Multisite functional connectivity mri classification of autism: Abide results, Front Hum Neurosci, vol.7, issue.599

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains, IEEE Signal Processing Magazine, vol.30, issue.3, pp.83-98, 2013.

F. R. Chung, Spectral graph theory, vol.92, 1997.

W. Huang, T. A. Bolton, J. D. Medaglia, D. S. Bassett, A. Ribeiro et al., A graph signal processing perspective on functional brain imaging, Proceedings of the IEEE, vol.106, issue.5, pp.868-885, 2018.

A. Singh, M. K. Dutta, R. Jennane, and E. Lespessailles, Classification of the trabecular bone structure of osteoporotic patients using machine vision, p.405

, Computers in Biology and Medicine, vol.91, p.148158, 2017.

S. M. Smith, D. Vidaurre, C. F. Beckmann, M. F. Glasser, M. Jenkinson et al.,

. Woolrich, Functional connectomics from resting-state fmri, Trends in cognitive sciences, vol.17, issue.12, pp.666-682, 2013.

M. D. Fox and M. Greicius, Clinical applications of resting state functional connectivity, Frontiers in systems neuroscience, vol.4, p.19, 2010.

L. Dodero, H. Q. Minh, M. Biagio, V. Murino, and D. Sona, Kernel-based classification for brain connectivity graphs on the riemannian manifold of positive definite matrices, 2015 IEEE 12th International Symposium on, p.415

, Biomedical Imaging (ISBI), pp.42-45, 2015.

T. Iidaka, Resting state functional magnetic resonance imaging and neural network classified autism and control, Cortex, vol.63, pp.55-67, 2015.

C. Wee, P. Yap, and D. Shen, Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks, CNS neuroscience & therapeutics, vol.420, issue.3, pp.212-219, 2016.

A. Abraham, M. P. Milham, A. D. Martino, R. C. Craddock, D. Samaras et al., Deriving reproducible biomarkers from multisite resting-state data: An autism-based example, NeuroImage, vol.147, pp.736-745, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01398867

A. S. Heinsfeld, A. R. Franco, R. C. Craddock, A. Buchweitz, and F. Meneguzzi, Identification of autism spectrum disorder using deep learning and the abide dataset, NeuroImage. Clinical, vol.17, pp.16-23, 2018.

S. I. Ktena, S. Parisot, E. Ferrante, M. Rajchl, M. C. Lee et al., Distance metric learning using graph convolutional networks: 430 Application to functional brain networks, International Conference on Medical Image Computing and Computer-Assisted Intervention, 2017.

A. Kazeminejad and R. C. Sotero, Topological properties of resting-state fmri functional networks improve machine learning-based autism classification, Frontiers in Neuroscience, vol.435, p.1018, 2019.

M. F. Glasser, T. S. Coalson, E. C. Robinson, C. D. Hacker, J. Harwell et al., A multi-modal parcellation of human cerebral cortex, Nature, vol.536, issue.7615, p.171, 2016.

A. Brahim, M. Hajjam-el-hassani, and N. Farrugia, Classification of autism spectrum disorder through the graph fourier transform of fmri temporal signals projected on structural connectome, Computer Analysis of Images and Patterns

A. D. Martino, C. G. Yan, Q. Li, E. Denio, F. X. Castellanos et al.,

C. L. Kennedy, C. Keown, J. E. Keysers, C. Lainhart, B. Lord et al., , p.450

V. Menon, N. J. Minshew, C. S. Monk, S. Mueller, R. A. Mller et al.,

J. T. Nebel, K. Nigg, K. A. O'hearn, S. J. Pelphrey, J. D. Peltier et al., The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic 455 brain architecture in autism, Mol Psychiatry, vol.19, issue.6, pp.659-67, 2014.

C. Craddock, S. Sikka, B. Cheung, R. Khanuja, S. S. Ghosh et al., Towards automated analysis of connectomes: The configurable pipeline for the analysis of connectomes 460 (c-pac), Frontiers in Neuroinformatics, vol.42

M. F. Glasser, T. S. Coalson, E. C. Robinson, C. D. Hacker, J. Harwell et al., A multi-modal parcellation of human cerebral cortex, Nature, vol.536, issue.7615, pp.171-178, 2016.

W. Huang, L. Goldsberry, N. F. Wymbs, S. T. Grafton, D. S. Bassett et al., Graph frequency analysis of brain signals, IEEE Journal of Selected Topics in Signal Processing, vol.10, issue.7, pp.1189-1203, 2016.

M. G. Preti and D. V. Ville, Decoupling of brain function from structure reveals regional behavioral specialization in

G. Varoquaux, F. Baronnet, A. Kleinschmidt, P. Fillard, and B. Thirion, Detection of brain functional-connectivity difference in post-stroke patients using group-level covariance modeling, Medical Image Computing and Computer-Assisted Intervention, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00512417

K. Dadi, M. Rahim, A. Abraham, D. Chyzhyk, M. Milham et al., , p.475

G. Varoquaux, Benchmarking functional connectome-based predictive models for resting-state fmri, NeuroImage, vol.192, pp.115-134, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01824205

J. R. Sato, C. V. , S. De-siqueira, K. Santos, and A. Brauer-massirer, Fujita, Complex network measures in autism spectrum disorders, IEEE/ACM Trans Comput Biol Bioinform, vol.15, issue.2, pp.581-587, 2018.

P. Golland and B. Fischl, Permutation tests for classification: towards statistical significance in image-based studies, in: Information processing in medical imaging, pp.330-341, 2003.

C. Dansereau, Y. Benhajali, C. Risterucci, E. M. Pich, P. Orban et al., Statistical power and prediction accuracy in mul-485 tisite resting-state fmri connectivity, NeuroImage, vol.149, pp.220-232, 2017.

M. C. Lai, M. V. Lombardo, J. Suckling, A. N. Ruigrok, and B. Chakrabarti, , p.490

C. Ecker, S. Deoni, M. Craig, D. Murphy, E. Bullmore et al., Biological sex affects the neurobiology of autism, vol.136, pp.2799-2815, 2013.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang et al., A comprehensive survey on graph neural networks

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in python, J. Mach. Learn. Res, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller et al., Machine learning for neuroimaging with scikit-learn, Frontiers in Neuroinformatics, vol.8, p.14, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01093971