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Abstract—Predicting the seabed from unfiltered bathymetric
lidar data is a very complex task and a critical issue in
bathymetric data processing especially with the objective of
nautical charting. This is challenging to ensure a high level of
quality and security for the needs of a national hydrographic
office. This paper proposes a methodology to predict the seabed
based on machine learning, which could be useful to automate
outlier detection and control the topo-bathymetric lidar point
cloud datasets. Several predictive methods have been investigated
to predict the seabed from our 2D + 1D data structure. A
characteristic dataset of Corsica region was used as a case study
for this predictive workflow.

Index Terms—data processing, topo-bathymetric lidar data,
supervised machine learning methods

I. INTRODUCTION

Bathymetric point cloud processing is a critical task for the
elaboration of nautical charts and its automation is challenging.
In particular, the processing of topo-bathymetric lidar data
is extremely complex, and is still done completely manually
today by the hydrographers and operators of Shom (French
Naval Hydrographic and Oceanographic Service). Indeed, the
final objective is to plot bathymetric information on nautical
charts, which have a legal status. These data are also critical
to assess the impact of erosion, flooding risk and the effects of
climate change along the coast. They provide key informations
for the evolution of ecosystems and underwater habitats and
the impact of past or planned coastal protection works.

Figure 1 shows the initial errors in a topo-bathymetric lidar
dataset and the result after manual processing. In this context,
deciding whether or not soundings have to be invalidated only
relies on the decision of a trained hydrographer [1]. Even if
this task is supported by dedicated visualization software for
a detailed inspection of all soundings, the process is tedious,
time-consuming and does not guarantee that all bathymetric
features that could rise a navigational risk have been preserved
(potential subjectivity of this type of processing). The objective
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of our research is to estimate the real seabed from topo-
bathymetric lidar point cloud in order to provide operators
with a tool for processing and quality checking bathymetric
data.
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Fig. 1. Types of errors depicted through a bathymetric section (top), sea
bottom and topography after manual processing (bottom)

The remaining of this article is organized as follows. In
Section II we briefly introduce the state of the art concerning



outlier detection in topo-bathymetric lidar data, and we present
its counterpart for Multibeam Echo Sounder (MBES) data,
which is very close in terms of characteristics and structure
of the acquired datasets. Then, in Section III we explain
our approach and especially the data structure we have built,
before presenting in Section IV a practical case study from
Shom’s Corsica data. We then discuss in Section V some of
our conclusions and present future perspectives raised by this
work.

II. METHODOLOGICAL BACKGROUND

The state of the art about point cloud manipulation and
processing is abundant, especially with the contributions of
recent deep learning research, as shown in the paper [2]
presenting a new point cloud segmentation method, PointCNN,
and its performance compared to other classical methods,
such as PointNet or SPGraph. These rapid advances in the
field of deep learning for lidar data are linked to the rise of
autonomous vehicles and the use of this technology for their
navigation, as shown in [3].

A. Topo-bathymetric lidar data

The recent evolution of bathymetric lidars, improving the
acquisition capacities (for example by increasing the density)
favors the use of methods associated with machine learning in
the context of processing bathymetric point cloud, as shown
in two recent papers [4, 5] dealing with the classification of
topo-bathymetric lidar point cloud.

The authors of [4] investigate the classification of a lidar
point cloud, from an AHAB Chiroptera I, acquired in Septem-
ber 2013. The authors propose to build a set of 15 features
based on the intensity measurements of the lidar sensor and
on the local geometry of the point cloud (by building a
cylindrical neighborhood around the studied soundings). These
descriptors are then normalized (standard score) and integrated
into an artificial neural network with 2 hidden layers (of
respectively 15 and 7 neurons). The terminal layer provides
the three classes (seabed, seabed object and water surface) that
the method is aiming to predict. Considering these results, the
real problem seems to be the ability to detect objects on the
bottom (the accuracy of the classification of the seabed or the
water surface is always above 98.5%).

The authors of [5] also seek to classify (binary classification:
bathymetric or non-bathymetric data) a bathymetric lidar point
cloud based on descriptors built from the raw data character-
istics (such as number and return number, position or attitude
measurement uncertainty, incidence angle, etc.). The authors
used 14 descriptors classified in three categories (return-based,
SBET and lidar-edge). The test data was acquired by NOAA
via a RIEGL VQ-880G off the coast of Florida in April 2016
and unlike the previous paper the data volume is much larger
(983320 soundings processed). The authors worked with 3
supervised classification methods: regularized logistic regres-
sion, multi-layer perceptron neural networks and regularized
extreme gradient boosting (XGBoost). Nevertheless, only the
results of the last model are presented. The confusion matrix

indicates a very good accuracy (99.6%) but this is nuanced by
the imbalance class found in the input dataset.

These two articles adopt the same standpoint: trying to
classify a point cloud from features intrinsinc to the data
or considering an auxiliary factor (e.g spatial information
or strength of the signal return). The prediction is also
always done on the point (no data rasterization) even if a
neighborhood can be built locally during features’ generation.
Furthermore, the metrics used are very global and do not
ensure that local artefacts or slope breaks have been properly
classified.

B. MBES data

Here a parallel is made with the MBES data because
hydrographers were very early interested in the automation
of the bathymetric point cloud processing. Indeed, since the
arrival of MBES sounders in the 1980s, numerous techniques
for detecting outliers in bathymetric point cloud have been
proposed, each with very specific objectives (detection of
underwater pipelines, generation of a global model, detection
of point or group outliers, etc.). These different techniques
have been described and compared in the literature review
presented in [6].

Indeed the authors of [6] present an exhaustive taxonomy
of MBES data processing algorithms from the 1980s to
the present. This classification shows the imbalance between
methods relying almost exclusively on unsupervised learning
(33 papers selected) and a method [7] relying on a supervised
technique. The classification then shows two different families
of processing methodologies: the data-oriented (methods cen-
tered on a sounding and its spatial or temporal neighborhood),
and the surface-oriented (methods centered on the generation
of a surface supporting the (semi)-automatic processing). In
that paper, the authors also present the advantages and disad-
vantages of these different methods.

The surface-oriented approaches, close to what we want to
implement in terms of algorithmic output, often have the same
limitations: a tendency to level the seabed bottom and remove
the shallow items (e.g. wrecks, obstruction). However, these
bathymetric artefacts are crucial for a national hydrographic
office which seeks to preserve all the seabed structures in order
to integrate them into nautical products. Hence our objective is
to take advantage of the high density offered by the lidar data
in shallow water to use supervised methods associated with
these surface-oriented approaches. In [7], the authors propose
to classify bathymetric point cloud from MBES sensors based
on a voxel data structure. Again, a binary classification has
been performed between the data to be kept and the data
considered as outliers. The model used for this prediction is
adapted from the UNet neural network [8], classically used in
medical imaging segmentation. This architecture being based
on the principle of auto-encoders, no features are built a priori.

C. Knowledge gaps and contributions

In contrast to previous bathymetric lidar research (see
[4, 5]), which focuses on the classification of bathymetric lidar



point cloud, we have formalised our question as a regression
problem. Indeed, in the context of the exploitation of bathy-
metric lidar point clouds for nautical products, and especially
for navigation safety, it is interesting to build a model based
on a regression and not a strict binary classification. Moreover,
these regressive approaches do not appear to have been used
in previous studies. In addition, by generating a digital bathy-
metric model, the output of the predictive workflow is much
easier to understand for the operators, in terms of control and
data quality, than a flag (accepted/rejected) on soundings.

The objectives of our study are to make the following
contributions:

o Combining a surface-oriented approach with supervised
regression methods

o Comparing the performance of different regressors with
our approach.

o Building up a new 2D + 1D data structure.

o Using the complementarity of sensors.

o Scaling up with large datasets for learning and testing
(over 40 million soundings per dataset).

III. PROPOSED APPROACH

Our approach estimates the seabed by producing a digital
bathymetric model from a regression algorithm. We seek
to produce a bathymetric surface from a point cloud with
supervised algorithms.

This paradigm shift, compared to the papers presented in
Section II-A, has two objectives:

« To be able to rely on the research associated with raster
data processing, working with classical image processing
[9] but also deep learning (such as for hyperspectral data
in [10]), which has matured considerably in recent years.

o To allow the operators to compare the generated surface
with the point cloud and use this surface as a processing
or control tool depending on the complexity of the
considered area, thus producing a decision support tool
in addition to an automatic workflow.

A. Data structure and features

To perform this regression, our proposal is based on a
data structure depicted in Figure 2, which encodes a 2D
(North/East) + 1D (elevation from the ellipsoid) voxel grid
in which we store a set of features. This sort of data structure
is also presented in the context of classification work based
on deep learning on hyperspectral data - see [10]. It allows for
resolutions on the vertical and horizontal axes, the density of
points being very variable in these two dimensions, making it
possible to better take into account the source data.
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Fig. 2. Data structure and features build for our regressor.

The features currently considered and computed for each
voxel composed of n soundings (with elevation z and intensity
1) are:

o unormalized density d of soundings per voxel:
d=n )

e mean elevation Zz:

2

3)

f:ﬁ,zli 4)

®)

« the flattening of the ellipsoid associated with the covari-
ance matrix of the soundings Pj:
A2 — A3
=
Where Aq, Ao and A3 are the eigenvalues calculated on the
point cloud present in the studied voxel. This last feature,
flattening, captures the shape of the point cloud and thus
allows to describe the voxel roughness (which could be very
discriminating between the water surface and the seabed for
example).

This data structure feeds a regressor, whose role is to predict
the seabed elevation within each watercolumn. The regression

Py (6)



methods we tested so far are: Support Vector Regression
(SVR), Random Forests (RF) and MultiLayer Perceptron
(MLP), which will be presented in details in the following
sub-section.

B. Sampling and modeling

We use a dataset of about 500,000 soundings (a first exper-
imental dataset to tune the models) that have been processed
with the features described in the previous sections. In our
approach the ground truth is the average elevation of the
soundings considered valid by an operator in a horizontal
pixel. This ground truth is therefore very unevenly distributed
in terms of elevation representation as shown in Figure 3. In
order to make the data unbiased and fit the varied ground truth
surface level characteristics, a bin histogram sampling method
is applied.

g
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Fig. 3. Elevation histogram for 1% dataset ground truth.

Suppose there are k bins. Let n; be the count assigned
to the i4, bin, and let a; and b; be its left and right edges.
We applied a very basic algorithm to sample the dataset. We
computed min_bin_size and mean_bin_size from the overall
bin frequency; then c;, which is the count of randomly sampled
data in each bin, is computed using the following equation:

o rand(mean_bin_size)
‘710 bin_freq < 50

We trained three regression models on the bathymetric data:
Support Vector Regression (SVR), Random Forests (RF) and
MultiLayer Perceptron (MLP).

SVR is considered as a non-parametric technique because
it relies on kernel functions. It aims to reduce the error by
determining the hyperplane and minimizing the difference
between the predicted and observed values. It tries to fit
the best line within a threshold value (Distance between
hyperplane and boundary line). It uses the points with this
boundary to predict the value. For a non-linear regression, the
kernel function transforms the data to a higher dimension and
performs the linear separation. Here we will use the radial
basis function kernel.

RF for nonlinear regression are trained by growing trees
dependent on a random vector, so the tree predictor takes
numerical values as opposed to class labels. It takes several

bin_freq > min_bin_size

(but different) regression decision trees and “votes” for them.
The random forest regression then averages all the predictions
to generate a better estimation of the expected ground truth.

The architecture of the MLP consists of four layers of neu-
rons, with complete connections between the layers. The first
(input) layer contains 128 neurons, the second (intermediate)
layer contains 64 neurons, the third layer contains 8 neurons,
and the last layer (output) contains 1 neuron. Neurons in
the first three layers have a relu activation function of the
following form:

z <0

f={0 50

The Neuron in the final layer has a linear activation function
to perform regression.

By using the linear layer at the output of an MLP, the
regression process obtains the predicted value. The model has
been trained using the error back propagation algorithm with
a learning coefficient of p = 0.01, the model loss is the mean
absolute error, and the optimizer is the Adam optimization
algorithm.

For the modeling, different horizontal and vertical resolu-
tions were taken into account in order to consider the different
point cloud densities. The trade-off was to try to have the
highest possible resolution (in order to better describe the
seabed) while keeping enough soundings for the regression to
be statistically relevant while considering computation times
and memory constraints compatible with the computers at our
disposal (96 Go RAM, 1To HDD, 2.50 GHz CPU, NVIDIA
Quadro RTX 5000).

The following tables depict the mean absolute error (MAE)
for different pixel resolutions and vertical resolutions for the
RF, SVR and MLP regressor model.

TABLE I
MEAN ABSOLUTE ERROR (MAE) FOR RF, SVR AND MLP PREDICTION
FOR 20 METERS HORIZONTAL RESOLUTION

Regressor | Vertical resolution | MAE
RF Sm 0.92m
SVR Sm 3.13m
MLP Sm 1.36m
RF 2m 0.73m
SVR 2m 3.04m
MLP 2m 1.48m

The results from Tables I to IV show that the MAE loss
of the SVR model tends to be larger compared to the RF and
MLP models when the vertical resolution is set to 5 meters or
2 meters. For the rest of the analysis, we did not consider the



TABLE 11
MAE FOR RF, SVR AND MLP PREDICTION FOR 15 METERS HORIZONTAL

RESOLUTION
Regressor | Vertical resolution | MAE
RF Sm 0.78m
SVR Sm 3.05m
MLP S5m 1.12m
RF 2m 0.62m
SVR 2m 2.99m
MLP 2m 6.79m
TABLE III
MAE FOR RF, SVR AND MLP PREDICTION FOR 10 METERS HORIZONTAL
RESOLUTION
Regressor | Vertical resolution | MAE
RF Sm 0.58m
SVR Sm 2.70m
MLP Sm 1.03m
RF 2m 0.42m
SVR 2m 2.68m
MLP 2m 1.08m

TABLE IV
MAE FOR RF, SVR AND MLP PREDICTION FOR 6 METERS HORIZONTAL
RESOLUTION

Regressor | Vertical resolution | MAE
RF Sm 0.59m
SVR Sm 2.74m
MLP Sm 0.97m
RF 2m 0.38m
SVR 2m 2.73m
MLP 2m 0.77m

SVR model because of its higher error, thus saving computing
time for RF and MLP which seem more promising. The SVR
method should be retested in the future with more features or
different kernels, rather than the radial basis function kernel
used here, to ensure that it is indeed less efficient.

Moreover as we wanted to reduce the horizontal resolution
to improve the density/fidelity trade-off of the model. Table V
shows the results for the various smaller resolutions.

TABLE V
MAE FOR RF AND MLP PREDICTION FOR HIGHER HORIZONTAL &
VERTICAL RESOLUTION

Regressor | Horizontal resolution | Vertical resolution | MAE
RF S5m Im 0.28m
MLP Sm 1m 0.66m
RF Sm 0.5m 0.38m
MLP Sm 0.5m 0.44m
RF 2m 0.5m 0.57m
MLP 2m 0.5m 0.69m
RF Im 0.5m 0.44m
MLP Im 0.5m 1.09m

After several iterations at different resolutions, both models
showed optimal results when the horizontal resolution is 5m.

Nevertheless, as the input dataset is small, we have sought to
improve these results by taking into account more soundings,
and we have focused on the 2m horizontal resolution, which is
the most effective compromise found so far with the operators
(in terms of seabed morphology and model performance).

IV. CORSICA CASE STUDY

In order to test our approach at a larger scale, we have
applied it to a Corsican dataset acquired in September 2018
as part of the Shom’s Litto3D® project (see [11]), which aims
to produce a complete land-sea reference system for France.
These data were acquired onboard a Cessna 208 B Grand
Caravan aircraft carrying a Leica HawkEye 3, deploying a
triple laser: red laser for topography, shallow green laser for
shallow water, and deep green laser for deeper water. The
data in Section III-B are derived from this acquisition. The
environmental conditions were particularly mild in the area
and the lidar was able to reach 40 meters depth.

Since the SVR performance in the preliminary study of
Section III-B was disappointing, we did not use it in the
Corsica case study.

A. First iteration on a small dataset

In order to test our approach, a first model was built with
a small dataset of 15,631,391 soundings (see Figure 4) with
topographic, shallow and deep laser (i.e. all lidar sensors
available on an area).

Fig. 4. Raw dataset with all lasers, scaled up by 10 on the Z-axis.

Table VI shows the results obtained on the dataset of
Figure 4 with the RF and MLP predictors, with a horizontal
resolution of 2m and a vertical resolution of 0.5m. This choice
was made in order to have the most accurate morphology
possible.

Note that keeping the measurements (and associated fea-
tures) from all the different sensors in the data structure can
make the information saved in the voxels confusing. Figure 5
shows an example of a data subset with the deep laser in red



TABLE VI
MAE AND STANDARD DEVIATION (STD) FOR RF AND MLP

Regressor | MAE STD
RF 0.28m | 1.26m
MLP 0.66m | 1.43m

and the shallow laser in green: we can see that there is a
significant overlap between the deep and shallow laser data.

Fig. 5. Side view and perspective view of a subset of data, lidar shallow in
green and lidar deep in red.

This overlap between the two sensors can perturb the
features construction. Indeed, the points’ density in an over-
lapping area will increase significantly and then decrease dras-
tically when the shallow laser is no longer present. Moreover,
the overlap may induce a change in light intensity return,
as shown in Figure 6. This change in the intensity of the
return signal is explained by the difference in power and signal
absorption in the watercolumn for the deep and shallow lasers,
see [12].

We have therefore modified our data structure as follows,
in order to improve the results of the regression models.

B. Separation of sensors and views

As just mentioned, keeping the different sensors in the same
data structure has the effect of diluting the quality of the
different features. We have therefore separated the different
sources (deep and shallow laser) and kept only the data sources
containing bathymetric data (excluding the topographic red
laser).

In addition, we have separated the front view from the
rear view considering that during the aircraft flight path the
acquisition “scenes” were different, which will allow in the
future to combine these two views to make the prediction

Fig. 6. At top both shallow and deep laser intensity. In the middle only
shallow laser intensity. At the bottom deep laser intensity. The grey scale
intensity is the same for both sensors.

more robust. Furthermore, in this subsection we will only
present the results of the random forest which, as shown in the
previous section, provides more accurate results than the MLP.
We tested this approach on 4 different datasets (2 flight lines
or more (FL) for each dataset) from the same area in Corsica.
Table VII presents the results of the RF on these 4 areas. A
horizontal resolution of Sm was chosen for the deep laser and
2m for the shallow laser, a vertical resolution of 0.50m was
chosen in both cases.

TABLE VII
MAE (IN METERS) AND STD (IN METERS) FOR RF PREDICTION FOR
DIFFERENT SENSORS AND VIEW

Sensors and view FL 528-531 | FL 438-439 | FL 440-441 | FL 442-443
Shallow rear 0.09 / 0.28 0.13/0.41 0.11/0.34 0.16 / 0.51
Shallow front 0.11/70.38 0.13 /7 0.40 0.12/70.34 0.15/70.49

Deep rear 0.26/1.33 036/ 1.37 0.32/1.31 0.21/ 0.99
Deep front 0.22/1.34 032/1.28 0.33/1.34 0.24/1.32

Results with the lowest MAE and STD for the shallow
and deep sensors are shown in bold in Table VIL It is
interesting to note that for the shallow sensor the MAE varies
between 0.09m and 0.16m, which is comparable to the noise
present in the lidar data (between 0.10m and 0.30m for the
shallow sensor). The STD varies between 0.26m and 0.51m
and appears to be marked by locally significant errors (see
Figure 9 for shallow errors). For deep sensors the MAE varies
between 0.21m and 0.36m, which is also comparable to the
noise present in the lidar data (between 0.30m and 0.50m for



the deep sensor).

C. Shallow laser dataset

Figure 7 shows the FLL 528-531 data set for the shallow rear

laser. The colorbar represents the elevation value with respect
to the GRS80 ellipsoid.
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Fig. 7. Original dataset with a 2m pixel grid size for FL 528-531 shallow
rear lidar.

Figure 8 represents the sampled pixels used to compute
the RF model, based on a 70% train and 30% test split.
The colorbar represents the elevation value with respect to
the GRS80 ellipsoid. Here the learning conditions are optimal
because a random sampling has been carried out. It will be
interesting in the future to vary this learning strategy to see
how the model is able to generalize.
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Fig. 8. Training FL 528-531 shallow rear dataset used for RF prediction.

Finally, Figure 9 shows the difference for each pixel be-
tween the ground truth and the prediction (only on the test
data). It is interesting to note that, as indicated by the MAE
in Table VII, the error is globally weak on the whole dataset.
There are however some localised errors around areas where
small morphological artifacts (compared to the grid pixel
size) are present or where few training samples are available
(typically in the shallowest areas) or on some boundaries.

D. Deep laser dataset

Figure 10 shows the ground truth of flight lines 528-531,
with a horizontal resolution of 5 meters and the deep rear laser.
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Fig. 9. Difference between the ground truth and prediction with FL 528-531
shallow rear dataset (on test samples only).
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Fig. 10. Original dataset with a Sm pixel grid size for FL 528-531 deep rear
dataset.

Figure 11 shows the sampling used for supervised learning
with the RF, using the same 70/30 ratio as with shallow laser.
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Fig. 11. Training FL 528-531 deep rear dataset used for RF prediction.

Finally, Figure 12 shows the localised error for the deep
laser. Here again the error is globally weak on the whole
dataset. However, there are again some localised errors around
areas where small morphological artifacts (compared to the
grid pixel size) are present, or where few training samples
are available (typically in the shallowest areas), or close to
the boundary of the domain (where the computed features are
perturbed by the presence of the boundary).
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Fig. 12. Difference between the ground truth and prediction for FL 528-531
deep rear dataset (on test samples only).

E. Bias in prediction

Figures 9 and 12 highlight some correlation between the
sign of the errors and the predicted depth. Figures 13 and 14
show a negative correlation between the signed prediction error
and the elevation in the ground truth. This behavior is not
in accordance with the safety of navigation, for which it is
important not to underestimate the elevation in shallow areas.
This behaviour will be further studied in a next study, in order
to understand the origin of the bias.

Elevation

Mean Error

Fig. 13. Mean difference between ground truth and prediction error per
elevation range for FL 528-531 shallow rear dataset.

Mean Error

Elevation

Fig. 14. Mean difference between ground truth and prediction error per
elevation range for FL 528-531 deep rear dataset.

V. PERSPECTIVES

In our future work, the selection of the training set will
depend on the scenario considered. Indeed, we will consider
2 different scenarios, depending on the existence of the data
present in the area — please refer to Figure 15. In the first
scenario, operators have already processed a portion of the
lidar swath (marked in red), which we use as training data.

In the second scenario, operators have processed the area (or
some neighboring area) during a former survey and we can
use this history as training data.

Moreover, there is still a lot of work to be done on the
descriptors. Indeed, we can add elements to better describe the
point cloud (by taking example on the article [4]), but also by
building descriptors based on data clustering like DBSCAN
[13] or ToMATo [14].

Finally, as we have seen in Section IV, many of the
prediction errors are localized in very narrow areas, which
suggests that a spatial regularization could be applied in order
to improve the final prediction by taking into account the
neighboring horizontal pixels. We could also set up combi-
nations of different views and different sensors allowing for
multi-source and multi-scale data fusion.
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Fig. 15. Different learning scenarios considered. Top: learn after a phase of
partial manual processing (in red). Bottom: learn from a previously processed
area (represented by the digital elevation model on top).
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