N

N

Architecture for the Next (Generation System
Management Tools for Distributed Computing Platforms
Jérome Gallard, Geoffroy Vallée, Thomas J. Naughton, Adrien Lebre, Stephen

L. Scott, Christine Morin

» To cite this version:

Jérome Gallard, Geoffroy Vallée, Thomas J. Naughton, Adrien Lebre, Stephen L. Scott, et al.. Ar-
chitecture for the Next Generation System Management Tools for Distributed Computing Platforms.
[Research Report] RR-7325, INRIA. 2010. inria-00494328

HAL 1d: inria-00494328
https://inria.hal.science/inria-00494328

Submitted on 22 Jun 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00494328
https://hal.archives-ouvertes.fr

%I 1IN RIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Architecture for the Next Generation System
Management Tools for Distributed Computing
Platforms

Jérome Gallard — Geoffroy Vallée — Thomas Naughton — Adrien Lebre — Stephen L.

Scott — Christine Morin

N° 7325

May 2010

apport
de recherche

ISRN INRIA/RR--7325--FR+ENG

ISSN 0249-6399

INSTITUT NATIONAL

DE RECHERCHE centre de recherche
EN INFORMATIQUE ;‘(I N RIA RENNES - BRETAGNE ATLANTIQUE

ET EN AUTOMATIQUE

Architecture for the Next Generation System
Management Tools for Distributed Computing
Platforms

Jérome Gallard* , Geoffroy Vallée!, Thomas Naughton' , Adrien
Lébret | Stephen L. Scott! |, Christine Morin*

Théme : Calcul distribué et applications & trés haute performance.
Equipe MYRIADS

Rapport de recherche n° 7325 — May 2010 — 28 pages

Abstract: In order to get more results or greater accuracy, computational sci-
entists execute mainly parallel or distributed applications, and try to scale these
applications up. Accordingly, they use more and more distributed resources, us-
ing local large-scale HPC systems, grids or even clouds. However, in most of
cases, the use and management of such platforms is static. Indeed generally,
the application has to be adapted to the environment rather than adapting the
environment to the applications’ needs. In addition, platforms are managed
through the concept of time and space partitioning mainly via the use of batch
schedulers: time partitioning enables the execution of several applications on
a same resources, and space partitioning enables the execution of applications
across several distributed resources. This leads to some usage limitations, where
applications can only be executed on a subset of the available resources. There-
fore, scientists have to manage technical details related to the execution of their
applications on each target HPC platforms, which could result in application
modifications, rather than focusing on the science.

In this article, we advocate for a system management tool enabling the trans-
parent configuration of the HPC platform and the customization of the execution
environment for large-scale HPC systems (such as clusters or MPPs), grids, and
clouds. We propose a new approach to manage these systems in a more dynamic

This work is done in the context of the INRIA SER-OS associated team — http://www.
irisa.fr/myriads/ser-os/.

* INRIA Rennes — Bretagne Atlantique, Rennes, France — firstname.lastname@inria.fr —
The INRIA team carries out this research work in the framework of the XtreemOS project
partially funded by the European Commission under contract #FP6-033576.

t Qak Ridge National Laboratory, Oak Ridge, TN 37830, USA — {valleegr, naughtont,
scottsl}@ornl.gov — http://www.ornl.gov — ORNL research is sponsored by the Office of Ad-
vanced Scientific Computing Research; U.S. Department of Energy. The work was performed
at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under Contract
No. De-AC05-000R22725.

T EMN, INRIA Rennes — Bretagne Altantique, LINA, Nantes, France — adrien.lebre@emn.fr

Centre de recherche INRIA Rennes — Bretagne Atlantique

IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex
Téléphone : +33 2 99 84 71 00 — Télécopie : +33 299 84 71 71

http://www.irisa.fr/myriads/ser-os/
http://www.irisa.fr/myriads/ser-os/
http://www.ornl.gov

2 Gallard & Vallée & Naughton & Lébre € Scott & Morin

way, where the resources can be configured and reconfigured automatically and
transparently. The proposed solution is not removing the benefit of resource
management systems such as batch system (they still provide a well-known
interface for job submission), but rather redefine the underlying system capa-
bilities. Our approach is based on a refinement of the concept of emulation and
virtualization introduced by Goldberg. Furthermore, the proposed approach
leads to the definition of a method that provides a unique interface to scientists
for the deployment and management of their applications on HPC platforms.
This method is based on two concepts: (i) the Virtual System Environment
(VSE), and (ii) Virtual Platforms (VPs).

Key-words: HPC system resource management, Flexibility, Virtualization,
Emulation, Distributed Systems, Virtual Platform, Virtual System Environ-
ment.

INRIA

Proposition d’Architecture pour la Prochaine
Génération de Systémes de Gestion des
Plates-Formes de Calculs Distribués

Résumé : Les applications de calcul congues pour étre exécutées de maniére
paralléle ou distribuée peuvent généralement obtenir des résultats plus rapide-
ment ou avec une plus grande précision en augmentant le nombre de ressources
de calcul qui leur est allouées. Ainsi, il est de plus en plus courant d’utiliser,
des ressources distribuées hétérogénes comme par exemple, des calculateurs a
haute performance (HPC, High Performance Computing) qui peuvent étre des
grappes ou des calculateurs massivement paralléles, des grilles, des centrales de
calcul (Cloud).

Cependant, dans la plupart des cas, les environnements d’exécution étant
fixes pour une plate-forme physique, il est nécessaire d’adapter l'application
afin de ’exécuter. Ainsi, bien souvent, les scientifiques doivent passer un temps
non négligeable dans la gestion technique liée a ’exécution de leur application
sur la plate-forme physique, temps qui aurait été stirement plus utile d’investir
dans la science de ’application.

Dans ce document, nous proposons un systéme de gestion des ressources
permettant de gérer les plates-formes physiques ainsi que les environnements
d’exécution. Notre approche se fonde sur un raffinement des concepts d’émulation
et de virtualisation proposés par Goldberg dans les années 1970. L’approche
proposée meéne a une méthode fournissant aux scientifiques une interface unique
de déploiement et de gestion de leurs applications sur des systémes distribués.
Cette approche repose sur deux concepts: les environnements d’exécution (VSE,
Virtual System Environment) et les plates-formes virtuelles (VP, Virtual Plat-
form).

Mots-clés : Gestion des Systémes & Haute Performance, Flexibilité, Virtuali-
sation, Emulation, Systémes Distribués, Plate-Forme Virtuelle, Environnement
d’Execution Virtuel.

4 Gallard & Vallée & Naughton & Lébre € Scott & Morin

1 Introduction

Nowadays, computational scientists mainly execute parallel or distributed appli-
cations, and try to scale up to get more results or greater accuracy. Accordingly,
they use more and more distributed resources, using local large-scale HPC sys-
tems (such as clusters or MPPs), grids or even clouds.

Many system management tools have been studied and developed for these
platforms but, to the best of our knowledge, all are static:

e in most of cases, the application should be adapted to the target plat-
form, i.e., it is very difficult to switch from a platform to another without
making some modifications to the application and/or the new execution
environment,

e the management of the platform is mainly done by partitioning the re-
sources, i.e., generally batch scheduler systems are used,

e system management tools are dedicated to a kind of platform.

The first point induces a huge wast of time in order to adapt the application
to the platform according to the scientist point of view, and the two other
points induce some limitations in the usage and the management of the physical
platforms.

We think that the best way to address challenges associated to the manage-
ment of distributed resources is to focus on the scientists’ efficiency: based on
what the scientists want to execute, the system should provide the adequate
capabilities such as tools and mechanisms to abstract the distributed nature of
computational resources, tolerate failures and provide the necessary runtimes.

The proposed work addresses these challenges from a system software man-
agement tool prospective, with the ultimate goal of enabling the automatic and
transparent configuration of the platforms and the customization of the execu-
tion environment for large-scale HPC systems.

In this document, we call flexibility of a computing system, the capacity
for this system to be configure and reconfigured automatically according to the
application needs. Considering an action (A) requiring sub-action (B) and (C)
in order to be done, in this document, we say a (A) is transparent if it implicitely
calls (B) and (C).

To do that, we break down a computing system into several layers: (0) set
of physical resources, (1) physical resource manager, (2) environment configura-
tion, and (3) application. In this document, we propose to add more flexibility
in the usage of those platforms by focusing on the first two layers (layer (0) and
(1)). We propose a refinement of the concept of emulation and virtualization
introduced by Goldberg in the 1970s. This refinement allows us to leverage the
concept, of partitioning generally used in HPC systems by adding the concepts
of abstraction, aggregation, and identity. These concepts enable the comparison
of the physical resources as “Lego” that it is possible to put them together in
order to have something more powerful.

In addition, we propose an approach for the on-demand creation of execution
environments, by focusing on the last two layers (layer (2) and (3)). This should
be done in a transparent way from the scientist point of view.

The proposed approach leads to the definition of a method in order to expose
to scientists a unique interface to deploy and manage their applications on HPC

INRIA

Management Tool Architecture for Distributed Computing Platforms 5

platforms. This method is based on two different concepts: (i) Virtual Platforms
(VPs) for the layers (0) and (1) and (ii) Virtual System Environment (VSE) for
the layers (2) and (3). A VP allows one to describe application’s needs in terms
of resources. These resources can be physical or virtual. A VSE allows one
to describe application’s needs in terms of software environment and software
configuration.

The management tool presented in this document is able to instantiate VPs
on top of physical resources and VSEs on top of VPs in order to transparently
execute applications.

The remainder of this document is organized as follows: Section 2 intro-
duces existing solutions for the management of HPC systems, grids, and clouds.
The proposed approach in order to make computing systems more flexible is
presented in Section 3. Section 4 presents a method in which scientists have a
unique way to interact with the platforms for the specification of their needs in
term of execution environment and platform configuration. Section 5 presents
the current implementation of our prototype, and Section 6 shows a typical use
case. Finally, Section 7 concludes and presents some future work.

2 Standard Approaches in Order to Manage Dis-
tributed and Parallel Platforms

The most common way of exploiting distributed architectures like clusters or
grids relies on a reservation scheme where a static set of resources (a parti-
tion of the resources) is assigned to an application during a bounded amount
of time [16]. Torque [2], or Sun Grid Engine [1] are example of well known
distributed resource manager.

This model of using platforms, even with the use of back-filling methods [23],
leads generally to a coarse-grain exploitation of the architecture since resources
are simply reassigned to another application at the end of allocated slots without
considering the actual application completion. In the best case, the time slot is
Inoger than the execution time of the application and resources are simply under
used. In the worst one, running applications are withdrawn from their resources
before completion, potentially leading to the loss of all performed computations
and requiring to execute again the application from scratch. If the former case
is not really critical from the scientist point of view, the latter requires to deal
with checkpointing issues to ensure the progress of the jobs. However, to be
able to use checkpointing mechanism, scientists generally need to adapt the
application to the system. For instance, these solutions are implemented in (i)
user space, i.e., at application level (a linkage with special libraries is generally
required) [19, 22] or (ii) in kernel space (generally using specific OS) [11, 24].
Ultimately, even if resource managers are generally very popular, they have some
limitations: (i) from the resource point of view, they only allow partitioning of
the resources, and (ii) the application needs to be adapted to the system.

Many significant organizations focus on providing a highly configurable envi-
ronment, which meets the needs of the user application. Such approaches have
been developed by the GLOBUS alliance with its Workspace Service [12]. How-
ever, they do not provide an easy and transparent way to dynamically manage
resources.

RR n°® 7325

6 Gallard & Vallée & Naughton & Lébre € Scott & Morin

In the area of Cloud computing, some open-source projects like Nimbus [13],
Eucalyptus [18] or SnowFlock [14] allow users to deploy their cloud and manage
a virtual cluster on a physical one. However, resources are partitioned and
applications should be adapted to the cloud environment.

ALADDIN-G5K, also known as Grid’5000 [4], is a French national Grid
Platform used for computer science research in order to experiment all layers of
Grid software. Scientists reserve Grid’5000 nodes, and deploy their experiments.
The platform is composed of 9 sites distributed around France. Grid’5000 al-
lows scientists to have the full control of the resources assigned to them. The
Grid’5000 infrastructure is a good example of resource flexibility. However, it
is complicated to domesticate it and natively allows only partitioning of the
resources.

Job Description Language (JSDL) [3] and its extension to describe parallel
application [21] allows one to describe a non-interactive application. A JSDL file
is typically sent to a batch scheduler. However, the description of the applica-
tion, the application execution environment and their configurations is limited.

Architecture Description Language (ADL) allows one to describe an appli-
cation without making any assumptions concerning its execution environment.
Acme [8] or Darwin [15] are example of ADL languages. This is a good way
to separate the description of a complex platform and the complexity of the
execution environment. We want to base our work with the same environment
management concepts. However we would like to extend this kind of work in
order to provide more flexibility to the physical platform.

3 A New Approach for the Management of Dis-
tributed and Parallel Platforms

Clouds, grids, clusters and MPPs are by nature different computing platforms:
some span across multiple sites, and multiple administrative domains, whereas
others are single site and single administrative domain.

We aim at federating tools for the management of such platforms in order
to: (i) enable more flexibility in the usage and the management of the phys-
ical resources, and (ii) automatically adapt the execution environment to the
application. To accomplish this goal, adequate abstractions are mandatory.
Therefore, we base our approach on the definition of formalisms that enables
the description of resource and execution environment required by a given ap-
plication, without making any assumption on to the physical resources.

3.1 Resource and Execution Environment Management

We assume a computing system is composed of 4 layers: (0) physical resources
(the platform), (1) physical resource manager, (2) environment configuration,
(8) application (see Figure 1).

The first two layers are linked with the physical resources and its manage-
ment. The physical resources (layer (0)) corresponds to the resources compos-
ing the platform. These resources can be distributed across a single site, like
clusters, or across multiple site, like grids. The resource manager (layer (1))
corresponds to the system managing the resources, for instance, an operating
system, or a batch scheduler. Of course, the resource manager layer can be

INRIA

Management Tool Architecture for Distributed Computing Platforms 7

(3)

(EC1-k EC2-k ECn-k

()

Environment 3
configuration EC1-0 EC2-0 ECn-0

(1)

Physical
resource
manager

(0)
Physical
resources

A
7

Figure 1: Computing System Layers

break down into sub-layers: one resource manager can be setup on top of an-
other. Currently, most of the resource managers enable resource partitioning.
In this document, we leverage this point by introducing new concepts to enable
a dynamic management of these physical resources.

The software configuration (layer (2)) corresponds to the configuration of
the environment for execution of a given application. The application (layer
(3)) is the scientific application.

The abstraction proposed by our management tool aims at hiding the chal-
lenges created by the execution of parallel/distributed applications on top of
parallel/distributed platforms, from the multi-sites/multi-users case, down to
the uni-site/uni-user case.

To summarize, our solution focuses on the three following aspects:

e From a resource management point of view, we need a formalism in order
to be able to describe the required platform without making any assump-
tion according to the physical resources.

e From an execution environment point of view, we need a formalism in
order to build execution environment adapted to the application, this will
enable the adaptation of the execution environment to the application
instead of adapting the application to the environment.

e Finally, we need a “driver” to manage these tools and “build” the needed
platform, and configure the needed execution environments.

RR n°® 7325

8 Gallard & Vallée & Naughton & Lébre € Scott & Morin

3.2 Formalisation of Virtualization System

To propose a formalism that can be used both for the description of all comput-
ing systems without making assumptions about the physical resources, and for
the increase of the flexibility for resource management, we propose a refinement
of the theory of Goldberg. Before to present our refinement, we briefly introduce
its theory.

In 1973, Goldberg proposed a formalization of the virtualization concept. His
model relies on two functions, ¢ and f [10, 20]. The function ¢ makes the asso-
ciation between processes running in the VM and resources exposed within the
VM; whereas the function f makes the association between resources allocated
to a VM and the bare hardware. Functions ¢ and f are totally independent, as
¢ is linked to processes in the VM, f is linked to resources.

Definition of the f function of Goldberg Let:
o V ={vo,v1,...,0m } be the set of virtual resources.

e R={rg,r1,...,mn} be the set of resources present in the real hardware.

Goldberg defines f : V' — R such that if y € V and z € R then f(y) = z,if 2
is the physical resource for the virtual resource y.

Definition of the recursion in the meaning of Goldberg Recursion could
be reached interpreting V' and R as two adjacent levels of virtual resources.
Then, the real physical machine is level 0 and virtual resources is level n. As a
consequence, f does the mapping between level n and level n + 1.

Recursion example If f; : Vi — R, fo : Vo — V7, then, a level 2 vir-
tual resource name y is mapped into fi1(f2(y)) or fiofa(y). Then, Goldberg
generalized this case with n-recursion: fio0fz0...0f(y).

Definition of the ¢ function of Goldberg Let: P = {po,p1,...,p;} be
the set of processes. Goldberg defines ¢ : P — R such that if x € P, y € R then
¢(x) = y,if y is the resource for the process x.

Execution of a virtual machine Running a process on a virtual machine
means running a process on virtual resources. Thus, if processes P = {po,p1,...,0;}
run on the virtual machine composed of virtual resources V. = {vg, v1, ..., vy },
then ¢ : P — V. The virtual resources, in turn, are mapped into their equiva-
lents: fo¢p: P — R.

General Virtual Machine From the previous statement, Goldberg defined
the execution of a virtual machine: fijofz0...0f,00.

Virtualization vs Emulation Godlberg defined the main difference between
virtualization and emulation by [9, 25]: wvirtualization is when the part of the
non-protected code is run directly on the bare hardware whereas emulation is
when the code (protected or not) is run by means of a micro-code (interface)
that is mot a physical part of the underlying resource.

INRIA

Management Tool Architecture for Distributed Computing Platforms 9

Goldberg Classification Limitations: Need for a Refinement The the-
ory proposed by Goldberg gives the foundation of the system-level virtualization.
We want to refine the theory in order to extend it to all computing systems. This
will allow us to describe all computing systems with a specific formalism. In
addition, we propose a formalism for the adaptation of execution environments.

3.3 Resource Management: Use Resources in a More Flex-
ible Way

In this section, we present a formalism based on a refinement of the theory of
Goldberg for the description of all combinations of resources and resource man-
agers, focusing on the layers (0) (the physical resources), and (1) (the physical
resource manager). The proposed formalism allows us to describe a platform
break down of distributed resources without any assumption about the physical
resources.

Current resource managers partition the available resources. For instance,
an operating system makes time-partitioning from the CPU point of view; and
a batch scheduler makes space-partitioning between the available resources. In
the following Section, we propose a formalism for classifying precisely what
kind of tools can be used for the management of resources in a more dynamic
manner. This refinement extends the f function of Goldberg, extesion which
was introduced in our previous work [6, 7].

3.3.1 Refinement Proposal

We think the Goldberg definitions related to virtualization and emulation should
be refined in order to introduce subsets of virtualization and emulation and apply
them not only to virtualizated systems but also to all computing systems.

As this section focuses on resource management, we focus on the study of the
f function of Goldberg for a system between levels n and n+1. In addition, and
for the rest of the document, all mathematical sets we use follow the Zermelo-
Fraenkel set theory, with the axiom of choice (ZFC).

Definition 3.1 (A system) We define a system “S” with a resource “R” in
which we apply the “t” function of Goldberg between the level “n+1” and “n”.
We note the system: S = (R, f,n+1,n).

For instance, a system “S” with a resource “computer” in which we apply
the function “operating system” between the level “n+1” and “n” is written:
S = (computer,operating _system,n + 1,n).

Definition 3.2 (Granularity) The granularity of a system is defined by the
fact that a system can be studied in its whole or be broken down into subset.

For instance, it is possible to study the system “S1”: S1 = (computer, operating _system, 1,0),
but it is also possible to study the system S2 = (memory, operating system,1,0).

Definition 3.3 (Set of attributes) We define 8 set of attributes linked to a
resource:

e capacity attributes (attributC) are linked with the notion of space available
to a resource, for instance, a computer can have a capacity attribute for the
memory “2 GB”. We note Cgr, = {attributC,,attributCs,, ..., attributCy, }

n?

RR n°® 7325

10 Gallard & Vallée & Naughton & Lébre € Scott & Morin

[~

attributC,, _// attributC,,

n+1

In this example, cn+1(attributC’Mn+1) = attributCyy,, -

Figure 2: Representation of the capacity attributes for a system S: S =
(M, cpy1,m+1,n)

the set of capacity attributes for a resource “R” at level “n”. In addition,
Cr, C C, with C the set of all the capacity attributes a resource can take.

e functionality attributes (attribut@) are linked with the notion of function-
ality of the resource, for instance, a CPU can have a functionality attribute
“add”. We note Qgr, = {attributQy,,attributQa,, ..., attributQy,} the
set of functionality attributes for a resource “R” at level “n”. In addition,
Qr, C Q, with Q) the set of all the functionality attributes a resource can
take.

e status attributes (attributE) are linked with the status of the resource,
for instance, a hard disk can have a status attributes “ext2”. We note
Egr, = {attributE,,,attributEs , ..., attributEy, } the set of status at-
tributes for a resource “R” at level “n”. In addition, Er, C E, with E the
set of all the status attributes a resource can take.

Definition 3.4 (Function of attributes) The “t” function defined by Gold-
berg characterized the transformation of a resource between levels “n” and “n+1".
We want to refined it with 8 new functions:

e ¢, a function from the set of capacity attributes at level “n+1" to a set of

capacity attributes at level “n” for a resource “R”: cp Cr,., — Chg,,-

n+1 : n+1

e q, a function from the set of functionality attributes at level “n+1" to a set
of functionality attributes at level “n” for a resource “R™ qr, ., : QRr,,, —

@R,

e ¢, a function from the set of status attributes at level “n+1” to a set of

status attributes at level “n” for a resource “R”: er Egr — ER,.

n+1 : n+1

Figure 2 presents an example of the links between two set of capacity at-
tributes for a resource “M” between “n+1" and “n”.

INRIA

Management Tool Architecture for Distributed Computing Platforms 11

Notations
o let set Aetset B,wenote AC BifVa(z € A = z € B),
o let set A et set B, wenote A=Bif (A C B) A (B C A),
e let set A and set B, we note A # B if =(A = B),

Considering the system S = (R, f,n+ 1,n), in the following paragraphs, we
present our definition of virtualization and emulation by introducing 4 concepts:
identity, partitioning, aggregation and abstraction.

3.3.2 Virtualization

According to the previously described concept of attributes, we propose the
refinement of the f function of Goldberg in order to precise the meaning of
virtualization and to extend it usage to any computing systems.

Definition 3.5 (Virtualization)
Virtualization < (Qr,., = Qr,) N (Er,., = Eg,)

This definition is directly derived from the Goldberg definition: the non-
protected part of the code at level “n+1" is executed directly at the level “n”,

Definition 3.6 (Virtualization-Identity or Identity)
Identity < (Virtualization) A (Cg,,, = CRgr,)

In case of “identity”, resources provided at level “n+1” are the same that
those available at level “n”.

Definition 3.7 (Virtualization-Partitioning or Partitioning)
Partitioning < (Virtualization) A (Cg,., C Cg,)

In case of partitioning, capacity attributes at level “n+17 is a subset of the
capacity attributes a level “n”.

Definition 3.8 (Virtualization-Aggregation or Aggregation)
aggregation < (Virtualization) A(Cr,., C Wi>2 Cri,) A (3 (2,y) € Cr,,,,
cn+1(z) € Cri, A cat1(y) € Crj, i # J)

In that case, there is at least two elements belonging to the set of capacity
attributes at level “n+1” providing by two distinct set of capacity attributes at
level “n”.

Figure 3 presents an example of aggregation.

3.3.3 Emulation

Emulation can be broken down into emulation-simple (or emulation) and emulation-
abstraction (or abstraction).

Definition 3.9 (Emulation-Simple or Emulation)
Emulation < —(Virtualization)

According to the definition of Goldberg, Emulation is not Virtualization in
the fact that a microcode is used to execute the emulated code on the physical
hardware.

RR n°® 7325

12 Gallard & Vallée & Naughton & Lébre € Scott & Morin

CxCxC

Figure 3: Aggregation

We define “emulationQ” the emulation function representative of the mi-
crocode action for the functionality attributes: emulation@ : Qr, — Qr,.
We define also “emulationE” the emulation function representative of the
microcode action for the status attributes: emulationE : Er, — Eg,.
Figure 4 represents emulation.

Definition 3.10 (Emulation-Abstraction or Abstraction) We note arity(fnct),

the arity of the function fnct.

Abstraction < (Emulation) A((arity(emulation@) > 1)V (arity(emulationE) > 1))
In that case, emulationQ (respectively emulationE) provides a logical sim-

plification of the level “n” at the level “n+1".

3.3.4 Summary

We propose an extension of the theory of Goldberg in order to extend the
virtualization case to any computing system:

Emulation allows one to provide at level “n+1” some logical characteristics not
available at level “n” by the mean of a microcode. If these characteristics
lead to a logical simplification of the level “n”, we call it abstraction.

Virtualization allows one to provide access from the level “n+1” to the level
“n”. Virtualization can be break down in identity (all the resources at the
level “n+1” are provided to the level “n”), partitioning (a subset of the
resources at the level “n” are provided to the level “n-+1”) and aggregation
(two or more resources at the level “n” are provided to the level “n+1" as
a “single” ressource)

INRIA

Management Tool Architecture for Distributed Computing Platforms 13

Figure 4: Emulation

This contribution allows one to describe all kind of computing system inde-
pendantly of the physical resources. We based our management tool on these
concepts of emulation and virtualization.

Figure 5 presents a schema of our refinement.

3.4 Execution Environment Management: Adaptation of
the System Environment to the Application

In the previous section, we presented a refinement of Goldberg’s theory that
extends the f function to all computing systems. In this section, we focus
on the ¢ function, also introduced by Goldberg, with the goal of building and
adapting execution environments of scientific applications to a target platform.
We based our work on the package set concept [26].

Definition 3.11 (A Package) A package is an abstraction for the local man-
agement of software that aims at easing the installation, configuration and re-
mowval of software in a given local system. It means that a collection of “op-
erations” are available for the package set mechanism. From the usage point
of view, only a subset of “operations” are important: it is possible to combine
package sets and get the intersection of package sets. These operations provides
a very flexible method to manage execution environment.

3.4.1 Package Sets Definition

Package Set Combination It is possible to combine package set together:
PackageSet 4 U PackageSetg. For instance, if system administrators,

RR n°® 7325

14 Gallard & Vallée & Naughton & Lébre € Scott & Morin

Start Analysis for a
virtual ressource M

|

Qrn+1=QRn /\ Ern+1=ERrn ?

i
4 no yes
>
3 | |
g Emulation Virtualization
:O: o —
Q Arity > 1 Crn+1 ? CRn ?
Q
>
2] no
I
as CRn+1=FRn Crn+1CC Crn Crn+1|U Crn

Partitioning Aggregation

Figure 5: Refinement of the theory of Goldberg

based on local policies, want to include a specific monitoring software in all
execution environments, they can specify it on the PackageSet Agministrator
which will be combined with the PackageSet appiication from the scientists
for their applications.

Package Set Intersection It is possible to define the intersection of package
sets: PackageSet o N PackageSetp. This can be used to identify common
software components between two execution environments.

Package Set Validation It is possible to ensure that the package set can be
correctly combined. This is based on a versioning and a dependency mech-
anism.

Versioning It is possible to specify the version of a specific package in a package
set. Some standard operators need to be provided to deal with versioning:
equal, superior to, inferior to, superior or equal to, and inferior or equal
to.

3.4.2 Package Sets Usage

Package sets define an execution environment in order to create a “golden image”
which is agnostic of the target platform execution configuration. After the
creation of the “golden image”, it can be deployed on the target platform.

INRIA

Management Tool Architecture for Distributed Computing Platforms 15

4 Proposed Method

In the previous section, we described a formalism that makes both resource and
software management more flexible. In this section, we describe more precisely
the methods derived from the proposed approach by presenting the architecture
of our management system for HPC platforms. The system is composed of five
major parts (see Figure 6):

A. the Description Module: the scientist and the administrator requirements in
terms of software and resources,

B. the Conciliation Module: the software and resource requirements conciliator,

C. the Toolbox Module: repositories and list of tools in order to provide flexi-
bility for both the software and the resource management,

D. the Discovery, Allocation and Configuration Module,

E. the Execution Module.

4.1 Description Module: the Concept of VP and VSE

In this section, we present the new concept of Virtual Platform (VP), and the
concept of Virtual System Environment (VSE), based on our previous works [26].

VP and VSE have the benefit of allowing both the scientists and the system
administrators to express their needs and constraints in term of resource con-
straints and execution environment constraints withtout making any assumption
regarding the physical resources: for instance, the scientist can require a set of
resources with the lowest network latency, whereas the system administrators
can require all deployed environments should include monitoring capabilities
and system-level protection.

To increase the flexibility for both the resource management and the exe-
cution environment management, we decide to separate the resource from the
environment requirements: no assumption needs to be made regarding the phys-
ical resources when the scientist describes its requirements for both resources
and the execution environment.

4.1.1 Virtual Platforms

Our work targets the management of several platforms which could be local
or geographically distributed. The distribution and the heterogeneity of the
resources lead to the complexity in order to manage and use these resources.
However, this complexity should be hidden to the scientist who, in most cases,
does not care about the location and the configuration of these resources. There-
fore, we need an abstraction, this is the concept of VP.

The VP is a description of the required resources for a given application. The
VP description is made without any assumption regarding the physical resources
available on the target platform. Our deployment tool should instantiate the
VP and combine all the necessary tools, as described in the Section 3 (tools for
emulation, virtualization, partioning, ...) in order to build the “custom” virtual
platform.

RR n°® 7325

16 Gallard & Vallée & Naughton & Lébre € Scott & Morin

Scientist

VP
description
(scientist)

VP
description
(admin)

LResource Tools
Repository1
Package
Repository1
b Package
Repository2

[

Distributed
Compute
Resources

External
events

INRIA

Figure 6: Architecture Overview

Management Tool Architecture for Distributed Computing Platforms 17

This approach has the advantage of enabling negotiation for the configura-
tion of the instantiation of a VP. For instance, in case of conflicts between the
requirements of the application and the requirements of the system administra-
tors, negotiations at the VP level are made. In addition, in order to get the
best resource allocation, negotiations between sites are also made.

4.1.2 Virtual System Environments

A Virtual System Environment (VSE) allows one to describe an application’s
software needs, which can be deployed in any kind single site / single adminis-
trative domain.

The software requirements for a given application are typically constraints on
the operating system (OS) and run-time environment (RTE). For instance, an
MPT application can be designed to run on top of Red Hat Enterprise Linux 4.0
with LAM/MPI 7.1.3. If those constraints change (e.g., update of the target
platform software configuration), most likely the application will have to be
modified, ported. Furthermore, it is important to decouple the definition of
the application’s needs in terms of RTE (scientist application requirements)
and what components system administrators want to have in each environment
used by applications (system administrator requirements).

The science resides in the applications and not in the technical details about
the requirements for the execution of those applications on HPC systems. In
other words, application developers should not have to deal with application
modifications due to (undesired) general software updates, which do not fit
their scientific roadmap.

The VSE is therefore a meta-description of the runtime environment required
by a given application. The VSE should be instantiated on the target platform
in a transparent way from the scientist point of view (see Figure 7).

Based on the package set management described in Section 3, a scientist can
describe a VSE without any assumption regarding the physical resources.

4.2 Conciliation Module: Merging the Scientist and Ad-
ministrator Requirements

The challenge is to “merge” scientists and system administrators needs: (i) from
the execution environment point of view, the system should be able to build
a single description of the execution environment containing both requirements
from the scientist and the administrator, and (ii) from the resource point of view,
the system should be able to configure the platform automatically according to
the scientist and the administrator requirements in order to deploy the execution
environment.

System Administrator Requirements The system administrator defines
requirements for the VSE and the VP according to the local policies regarding
the usage of HPC systems. These requirements can be made for a specific
scientist or for a group of scientists. As a result, it is possible to define very
precise policies for the VSEs and the VPs.

For instance, concerning the VSE requirements the policy can be the instal-
lation of a specific monitoring tool on all execution environments. Concerning

RR n°® 7325

18 Gallard & Vallée & Naughton & Lébre € Scott & Morin

Administrator Scientist

Scientist
Application
Constraints

Administrator | -~ |
Constraints | Others things

J

A —» B Aimplies a constraint on B

A » B A could implied a constraint on B

Figure 7: VSE.

INRIA

Management Tool Architecture for Distributed Computing Platforms 19

the VP requirement, for instance, it is possible to implicitely aggregate some
resources for a given group of scientists.

Scientist Requirements Like administrators, scientists can define VPs and
VSEs without any assumptions regarding the physical resources.

Merging of the Requirements From the description of the VP and VSE
received from the scientist and the administrator, our management tool is able
to “merge” them and check their validity. This can be done thanks to the
formalism introduced previously in Section 3.

4.3 Execution Module: Instantiation of VPs and VSEs

The Execution Module is in charge of creating the construction plan in order to
provide the requested instantiation of the VP /VSE. Three steps can be enlight-
ened: (1) the Execution Module checks if the VSE is already available on some
resources, (2) if it is not the case, the Execution Module tries to instantiate
the VP/VSE with the tools dedicated to software and resource management,
and (3) the Execution Module allocates, deploys and configures the resources
in order to set up instantiations of the VP /VSE.
Figure 8 presents an instantiation of VP and VSE on physical resources.

4.3.1 Environment Availability

The execution module is in charge of instantiate the VP and the VSE according
to the description provided by the conciliator module.

First of all, the manager tries to find the required instantiation of VP/VSE
with the Discovery Module.

e If the execution environment is already available on some resources, the
Execution Module checks if there is no conflict between the obtained exe-
cution environment /resources and the users/administrators requirements.

— If there is no conflict, the Execution Module tries to allocate and
configure these resources.

e In case of conflict, or if no good instantiation of VP /VSE is available, the
manager tries to instantiate them in order to answer the request.

4.3.2 Concept of Plan: How to Instantiate VPs and VSEs

The Execution Module plans the action required to configure the required soft-
ware on the resources. For that, the Execution Module asks to the Toolbox
Module both the list of software and resource requirementse. Both lists are
check for conflicts with the users and the administrators’ requirements.

If everything is right, the Execution Module asks to the Discovery Module
for finding some resources corresponding to the needs.

When receiving this list, the Execution Module is able, thanks to, the list of
software needed, the list of resources available, the list of tools needed, to build
a plan. For instance:

1. Allocate resources,

RR n°® 7325

20 Gallard & Vallée & Naughton & Lébre € Scott & Morin

/ N
N N

Site A Site B

A0 and A1l are resources of the site A with architecture A. B33 and B34 are
resources of the site B with architecture B. From the scientist point of view (layer 1),
A0 and B34 are resources provided by the same site: the Virtual Platform, hiding
the distributed complexity. In addition, the VSEs are build in order to feet the
architecture A for the site A and B for the site B with all required packages, hiding
the heterogeneity complexity (layer 2). As a result, the application can be run in a
totally transparent way.

Figure 8: VP/VSE instantiation

INRIA

Management Tool Architecture for Distributed Computing Platforms 21

2. Instantiate the VP:

(a) Use “tool1” for the deployment of “operating system”,
(b) Use “tool2” for the installation of “virtualization system”,

(c¢) Use “tool3” to setup a VPN, ...
3. Instantiate the VSE:

(a) Use “tool4” for the installation of “libraries”,

(b) Use “tool3” for the installation of the application, ...

4.4 Discovery, Allocation and Configuration of the Re-
sources

The plan is given to the Discovery , Allocation and Configuration Module in
charge of executing the plan, i.e., instantiate the VP and the VSE. In case of
error (e.g., resource not available at the time of the allocation) the Execution
Module is responsible for modifying the plan and for making a new submission.

4.5 Toolbox Module

The Toolbox Module manages the collection of tools for the instantiation of VPs
and VSEs.

There are two types of tools: (1) the tools that manages the software repos-
itories (VSE configuration), and (2) the tools that manages and configures the
compute resources (VP configuration).

4.5.1 Tools to Instantiate a VSE

In order to provide an efficient system for software management, we designed
our solution based on the existing concept of repository. Applications software
is accessible from a well-defined source, can be downloaded, installed, and con-
figured on the compute resources using dedicated tools. For instance, on Debian
Systems, there are public Debian repositories to install and configure software
on the target compute resources, using dedicated tools like apt-get.

For a specific software required by the user, the Software Management Tool-
box is able to provide to the Execution Module a list of all the needed software
(with all the dependencies and the required compute resource architecture).

4.5.2 Tools to Instantiate a VP

As done for the Software Management Toolbox, we use accessible repositories
for the Resource Management Toolbox too. The repositories contain the list of
available tools in order to provide resource partitioning, resource aggregation,
and resource abstraction. In that way, tools for flexibility are accessible and can
be installed, in order to set up and configure compute resources.

RR n°® 7325

22 Gallard & Vallée & Naughton & Lébre € Scott & Morin

5 Current Implementation

A prototype is currently under development, merging and extending existing
tools: we based our developments on software such as the OSCAR system man-
agement tool [17] and its extension OSCAR-V [27], the Saline virtual machine
(VM) manager [5], and the Aladdin/G5K [4] grid system management tools (we
are actively involved in all these projects).

5.1 Description and Conciliation Modules

Currently, VSEs are defined via XML files and allows one to describe the needed
set of software packages (using package sets). The XML file is validate by
OSCAR in two phases: (i) the basic validation of the XML file using standard
XML tools, and (ii) the validation of the list of packages from the package set.

5.2 Toolbox Module
5.2.1 Tools to instantiate a VSE

OSCAR provides a tool for the management of OSCAR packages repositories:
the OSCAR Repository Manager (ORM) and the OSCAR Package Manager
(PackMan). Currently OSCAR packages cover standard Linux distribution such
as CentOS, Fedora, Debian. OSCAR is able to create “golden images” containing
all the necessary execution environment for a given distribution, based on a VSE
definition.

5.2.2 Tools to instantiate a VP

Saline allows one to deploy virtual clusters, perform their network configuration,
and manage them at grid level. Practically, Saline makes efficient periodical
snapshots of the virtual cluster and can, if needed, restart the cluster on another
site of the grid from the latest snapshot.

5.3 Execution Module

At each site, OSCAR-V actually receives the configuration information from
the driver and ultimately deploys the environment needed for the execution of
the application. By leveraging OSCAR-V, this environment can be based on
a number of system configurations, to include: standard disk-full & disk-less
system configurations and physical & virtual machines.

5.4 Discovery, Allocation and Configuration Module

Currently, the service discovery relies on a existing batch scheduler. This is a
limitation of our system and we are working on other solutions like UDDI in
order to find and use resources.

6 Use Case

To illustrate the capabilities of the proposed solution, we present a use case
as example. A scientist wants to execute its application (myApplication) with

INRIA

Management Tool Architecture for Distributed Computing Platforms 23

VSE instantiation =< Windows + myLibrary

VP instantiation <

Figure 9: Use Case

a dedicated library (myLibrary) only available on Microsoft Windows systems,
and need at least 32 GB of memory. The scientist has the habit of running its
application on a dedicated Windows machine with 32 GB of memory.
However, if for some reasons, this machine is not available and, the only
available machines are 4 Debian machine with 8 GB of memory, the scientist
is confronted to three choices: (i) she or he waits for a similar Windows ma-
chine with 32 GB of memory to be available, (ii) she or he tries to modify the
application to adapt it to the available environment, and (iii) she or he use a
intelligent deployment tool, like the one we present in this paper, in order to
take benefit of whatever HPC system available without modifications of the ap-
plication. We assumethe scientist takes the choice (iii). In that case, our system
should deploy an adequate instantiation of the VP, i.e., an aggregation tool on
the 4 physical resources (like the Kerrighed SSI OS). This provides the illusion
to have one Linux SMP node with 32 GB of memory. Then the system should
deploy a partitioning tool, like a VM in order to install and provide a Microsoft
Windows environment. Now our tool can deploy the instantiation of the VSE
inside the VMs. Finally, the scientist application can be deployed (see Figure9).

7 Conclusion and Future Work

In this document, we present the architecture of a new tool for the manage-
ment of clusters, MPPs, grids, and clouds. The key of the architecture is to
include adequate abstractions, assuming a computing system is composed of
the following layers: physical resources, physical resources manager, execution
environment, and application.

We propose a refinement of the Goldberg theory in order to be able to give
more malleability in terms of management to the resources and the environment

RR n°® 7325

24 Gallard & Vallée & Naughton & Lébre € Scott & Morin

execution. We also propose the concepts of Virtual Platform and Virtual System
Environment in order to abstract and differentiate the resource management and
the execution environment from the application. In addition, the abstraction
we make allow one to use many already existing software.

We propose the design and present the current implementation of our man-
agement tool.

From the resource point of view, one of the major benefits is that our manage-
ment tool does not only provide partitioning in order to manage the resources.
It allows the “composition” of several tools for resource management in order to
completely abstract the resources to the scientists.

From the execution environment point of view, one of the major benefits
of the proposed architecture is to adapt the system environment to user needs
without compromising the control capabilities of system administrators. This
enables scientists to easily describe their application’s needs in terms of software
and the hardware resources and then the system will automatically create the
correct environment for the target systems. For that, the proposed architecture
includes abstractions for standard resource, users and application management
software.

Ultimately, the proposed architecture provides powerful tools that could
be reused in many different contexts, guaranteeing stability and compatibility
which ultimately should ease the scientists’ life.

Currently, we continue to work on the implementation of our prototype.
More precisely, we are working on the integration of OSCAR and Saline. In
addition, we are working on the definition of the VP description file.

We believe “flexibility” is a key concept for abstracting the complexity of
HPC systems away from scientists so they can foxus on the science and not tech-
nical details associated to the execution of their applications on top of different
platforms. This is why it is necessary to (i) dissociate the exection environment
from the resources, and (ii) dissociate the view of the resources from the physical
resources. Furthermore, the concept of flexibility should be of importance for
the emergence of the “Everything as a Service” concept, in which everything is
considered to be a service and can be configured, and re-configured “on-the-fly”.

INRIA

Management Tool Architecture for Distributed Computing Platforms 25

References

[1]
2]

[3]

[4]

[5]

6]

[7]

18]

9]

[10]

[11]

Sun Grid Engine Welcome Page: http://gridengine.sunsource.net/. 2

Torque Resource Manager Welcome Page:
http://www.clusterresources.com /products,/torque-resource-manager.php.
2

Ali Anjomshoaa, Fred Brisard, Michel Drescher, Donal Fellows, An Ly,
Stephen McGough, Darren Pulsipher, and Andreas Savva. Job Submission

Description Language (JSDL) Specification, Version 1.0, November 2005.
2

Raphael Bolze, Franck Cappello, Eddy Caron, Michel Daydé, Frederic De-
sprez, Emmanuel Jeannot, Yvon Jégou, Stéphane Lantéri, Julien Leduc,
Nouredine Melab, Guillaume Mornet, Raymond Namyst, Pascale Primet,
Benjamin Quetier, Olivier Richard, El-Ghazali Talbi, and Iréa Touche.
Grid’5000: a large scale and highly reconfigurable experimental Grid
testbed. International Journal of High Performance Computing Applica-
tions, 20(4):481-494, November 2006. 2, 5

Jérome Gallard, Adrien Lébre, and Christine Morin. Saline: Improving
Best-Effort Job Management in Grids. In PDP 2010: The 18th Euromi-
cro International Conference on Parallel, Distributed and Network-Based
Computing — Special Session: Virtualization — To appear, Pisa Italie, 2010.
5

Jérome Gallard, Adrien Leébre, Geoffroy Vallée, Christine Morin, Pascal
Gallard, and Stephen Scott. Refinement Proposal of the Goldberg’s Theory.
In ICA8PP’09: International Conference on Algorithms and Architectures
for Parallel Processing, pages 853—-865, Tapei Taiwan, Province De Chine,
2009. 3.3

Jérome Gallard, Geoffroy Vallée, Adrien Lébre, Christine Morin, Pascal
Gallard, and Stephen Scott. Complementarity between Virtualization and
Single System Image Technologies. In FEuro-Par 2008 Workshops - Par-
allel Processing: VHPC 2008, UNICORE 2008, HPPC 2008, SGS 2008,
PROPER 2008, ROIA 2008, and DPA 2008, Las Palmas de Gran Canaria
Espagne, 2009. 3.3

David Garlan, Robert T. Monroe, and David Wile. Acme: architectural
description of component-based systems. pages 47—67, 2000. 2

R. P. Goldberg. Virtual machines: semantics and examples. Proceedings
IEEE International Computer Society, Conference Boston Massachusetts,
1971. 3.2

R. P. Goldberg. Architecture of virtual machines. AFIPS National Com-
puter Conference, July 1973. 3.2

Paul H Hargrove and Jason C Duell. Berkeley lab checkpoint/restart
(BLCR) for Linux clusters. Journal of Physics: Conference Series, 46:494—
499, 2006. 2

RR n°® 7325

26

Gallard & Vallée & Naughton & Lébre € Scott & Morin

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

Kate Keahey, Ian Foster, Tim Freeman, Xuehai Zhang, and Daniel Galron.
Virtual Workspaces in the Grid. In 11th International Euro-Par Confer-
ence, Lisbon, Portugal, 2005. 2

Kate Keahey and Tim Freeman. Contextualization: Providing One-Click
Virtual Clusters. In 4th International Conference on e-Science, Indianapo-
lis, Indiana, USA, 2008. 2

H. Andres Lagar-Cavilla, Joseph Whitney, Adin Scannell, Philip Patchin,
Stephen M. Rumble, Eyal de Lara, Michael Brudno, and M. Satya-
narayanan. SnowFlock: Rapid Virtual Machine Cloning for Cloud Comput-
ing. In Proceedings of the 3rd European Conference on Computer Systems
(Eurosys), Nuremberg, Germany, April 2009. 2

J. Magee, N. Dulay, and J. Kramer. Structuring parallel and distributed
programs. pages 73-82, 1993. 2

Martin W. Margo, Kenneth Yoshimoto, Patricia Kovatch, and Phil An-
drews. Impact of Reservations on Production Job Scheduling. In Job
Scheduling Strategies for Parallel Processing, pages 116-131. 13th Worshop
on Job Scheduling Strategies for Parallel Processing, 2007. 2

John Mugler, Thomas Naughton, Stephen L. Scott, Brian Barrett, Andrew
Lumsdaine, Jeffrey M. Squyres, Benoit des Ligneris, Francis Giraldeau, and
Chokchai Leangsuksun. OSCAR Clusters. In Proceedings of the 5" Annual
Ottawa Linux Symposium (OLS’03), Ottawa, Canada, July 23-26, 2003. 5

Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil
Soman, Lamia Youseff, and Dmitrii Zagorodnov. The Eucalyptus Open-
source Cloud-computing System. In Proceedings of the 9th IEEE Interna-
tional Symposium on Cluster Computing and the Grid (CCGRID), Shang-
hai, China, 2009. 2

James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt: Trans-
parent Checkpointing Under Unix. In Proceedings of the USENIX 1995
Technical Conference (TCON), pages 213-223, Berkeley, CA, USA, 1995.
2

Gerald J. Popek and R. P. Goldberg. Formal requirements for virtualizable
third generation architectures. July 1974. 3.2

Ivan Rodero, Francesc Guim, Julita Corbalan, and Jests Labarta. How the
JSDL can Exploit the Parallelism? Proceedings of the Sixth IEEE Inter-
national Symposium on Cluster Computing and the Grid (CCGRID’06),
2006. 2

Joseph F. Ruscio, Michael A. Heffner, and Srinidhi Varadarajan. DejaVu:
Transparent User-Level Checkpointing, Migration and Recovery for Dis-
tributed Systems. In Proceedings of the 2006 ACM/IEEE conference on
Supercomputing (SC '06), page 158, New York, NY, USA, 2006. ACM. 2

Edi Shmueli and Dror G. Feitelson. Backfilling with Lookahead to Optimize
the Performance of Parallel Job Scheduling. In Job Scheduling Strategies
for Parallel Processing, pages 228-251, 2003. 2

INRIA

Management Tool Architecture for Distributed Computing Platforms 27

[24]

[25]

[26]

[27]

Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed com-
puting in practice: the condor experience: Research articles. Concurr.
Comput. : Pract. Exper., 17(2-4):323-356, 2005. 2

R. P. Goldberg U. O. Gagliardi. Virtualizable architectures. Proceedings
ACM AICA International Computing Symposium Venice Italy, 1972. 3.2

Geoffroy Vallée, Thomas Naughton, Hong Ong, Anand Tikotekar, Christian
Engelmann, Wesley Bland, Ferrol Aderholdt, and Stephen L. Scott. Vir-
tual System Environments. In Systems and Virtualization Management.
Standards and New Technologies, volume 18 of Communications in Com-
puter and Information Science, pages 72-83. Springer Berlin Heidelberg,
October 21-22, 2008. 3.4, 4.1

Geoffroy Vallée, Thomas Naughton, and Stephen L. Scott. System man-
agement software for virtual environments. In CF °07: Proceedings of the
4th international conference on Computing frontiers, pages 153—160, New
York, NY, USA, May 7-9, 2007. ACM. 5

RR n°® 7325

Gallard & Vallée & Naughton & Lébre € Scott & Morin

Contents

Introduction

Standard Approaches in Order to Manage Distributed and Par-

allel Platforms

A New Approach for the Management of Distributed and Par-

allel Platforms

3.1 Resource and Execution Environment Management

3.2 Formalisation of Virtualization System

3.3 Resource Management: Use Resources in a More Flexible Way
3.3.1 Refinement Proposal
3.3.2 Virtualization o 0o
333 Emulation 0o
3.3.4 Summary e e

3.4 Execution Environment Management: Adaptation of the System
Environment to the Application
3.4.1 Package Sets Definition
3.4.2 Package Sets Usage

Proposed Method

4.1 Description Module: the Concept of VP and VSE
4.1.1 Virtual Platforms o 0oL,
4.1.2 Virtual System Environments

4.2 Conciliation Module: Merging the Scientist and Administrator
Requirements Lo oL

4.3 Execution Module: Instantiation of VPs and VSEs
4.3.1 Environment Availability
4.3.2 Concept of Plan: How to Instantiate VPs and VSEs . . .

4.4 Discovery, Allocation and Configuration of the Resources .

4.5 Toolbox Module
4.5.1 Tools to Instantiate a VSE
4.5.2 Tools to Instantiatea VP

Current Implementation

5.1 Description and Conciliation Modules

5.2 Toolbox Module
5.2.1 Tools to instantiatea VSE
5.2.2 Tools to instantiatea VP

5.3 Execution Module,

5.4 Discovery, Allocation and Configuration Module

Use Case

Conclusion and Future Work

15
15
15
17

17
19
19
19
21
21
21
21

22
22
22
22
22
22
22

22

23

INRIA

/<

Centre de recherche INRIA Rennes — Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Centre de recherche INRIA Bordeaux — Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble — Rhone-Alpes : 655, avenue de 1’Europe - 38334 Montbonnot Saint-Ismier
Centre de recherche INRIA Lille — Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy — Grand Est : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-1eés-Nancy Cedex
Centre de recherche INRIA Paris — Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Saclay — ile-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis — Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399

	Introduction
	Standard Approaches in Order to Manage Distributed and Parallel Platforms
	A New Approach for the Management of Distributed and Parallel Platforms
	Resource and Execution Environment Management
	Formalisation of Virtualization System
	Resource Management: Use Resources in a More Flexible Way
	Refinement Proposal
	Virtualization
	Emulation
	Summary

	Execution Environment Management: Adaptation of the System Environment to the Application
	Package Sets Definition
	Package Sets Usage

	Proposed Method
	Description Module: the Concept of VP and VSE
	Virtual Platforms
	Virtual System Environments

	Conciliation Module: Merging the Scientist and Administrator Requirements
	Execution Module: Instantiation of VPs and VSEs
	Environment Availability
	Concept of Plan: How to Instantiate VPs and VSEs

	Discovery, Allocation and Configuration of the Resources
	Toolbox Module
	Tools to Instantiate a VSE
	Tools to Instantiate a VP

	Current Implementation
	Description and Conciliation Modules
	Toolbox Module
	Tools to instantiate a VSE
	Tools to instantiate a VP

	Execution Module
	Discovery, Allocation and Configuration Module

	Use Case
	Conclusion and Future Work

