S. Allassonnière, Y. Amit, and A. Trouvé, Towards a coherent statistical framework for dense deformable template estimation, Machine Learning, pp.3-295, 2003.
DOI : 10.1111/j.1467-9868.2007.00574.x

A. [. Andrieu, R. Doucet, . Holensteinafr97-]-e, B. Aleskerov, B. Freisleben et al., Particle Markov chain Monte Carlo methods, Proceedings of the IEEEAK10] S. Allassonnière et E. Kuhn : Stochastic Algorithm For Parameter Estimation For Dense Deformable Template Mixture Model. ESAIM-PS, pp.269-342, 1991.
DOI : 10.1111/j.1467-9868.2009.00736.x

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

]. S. Akt10a, E. Allassonnière, and . Kuhn, Trouvé : Construction of Bayesian deformable models via a stochastic approximation algorithm : a convergence study, Bernoulli, vol.16, issue.3, pp.641-678, 2010.

E. Akt10b-]-stéphanie-allassonnière, A. Kuhn, and . Trouvé, Models using stochastic algorithms : Applications to medical images Journal de la Société Française de Statistique Andrieu et É. Moulines : On the ergodicity properties of some adaptive MCMC algorithms, The Annals of Applied Probability, vol.151, issue.163, pp.1-16, 2006.

]. T. Amb03 and . Ambwani, Multi class support vector machine implementation to intrusion detection Priouret : Stability of stochastic approximation under verifiable conditions, Neural Networks Proceedings of the International Joint Conference on Atchadé et J. S. Rosenthal : On adaptive Markov chain Monte Carlo algorithms, pp.2300-2305283, 2003.

G. [. Andrieu and . Roberts, The pseudo-marginal approach for efficient Monte Carlo computations. The Annals of Statistics, pp.697-725, 2009.

J. Ashburner, A fast diffeomorphic image registration algorithm, AV12] C. Andrieu et M, pp.95-113, 2007.
DOI : 10.1016/j.neuroimage.2007.07.007

]. D. Bar-+-11, V. Borghys, S. R. Achard, N. Rotman, C. Gorelik et al., Hyperspectral anomaly detection : A comparative evaluation of methods, Proc. of IEEE URSI GASS, pp.1-4, 2011.

J. Bigot and B. Charlier, On the consistency of Fr??chet means in deformable models for curve and image analysis, Electronic Journal of Statistics, vol.5, issue.0, pp.1054-10891139, 2003.
DOI : 10.1214/11-EJS633

J. Bigot, X. J. Gendre-[-bgl09-], S. Bigot, J. G. Gadat, J. P. Booth et al., Minimax properties of fréchet means of discretely sampled curves. The Annals of Statistics Loubes : Statistical m-estimation and consistency in large deformable models for image warping Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm, Journal of Mathematical Imaging and Vision Journal of the Royal Statistical Society : Series B (Statistical Methodology, vol.41, issue.3431, pp.923-956270, 1999.

J. Bigot, M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes, Fréchet means of curves for signal averaging and application to ecg data analysis. arXiv preprint arXiv :1111.1855 Computing large deformation metric mappings via geodesic flows of diffeomorphisms [Bod09] S. Boda : Feature-based image registration Bookstein : Morphometric tools for landmark data : geometry and biology, Thèse de doctorat Sveinsson : Classification of hyperspectral data from urban areas based on extended morphological profiles. Geoscience and Remote Sensing, pp.139-157480, 1997.

]. L. Bro92, . G. Brown-[-bsh00-]-s, D. Beaven, L. Stein, and . Hoff, A survey of image registration techniques Comparison of gaussian mixture and linear mixture models for classification of hyperspectral data, Geoscience and Remote Sensing Symposium, pp.325-376, 1992.

D. Barbara, N. Wu, and S. Jajodia, Detecting Novel Network Intrusions Using Bayes Estimators, First SIAM Conference on Data Mining. Citeseer, 2001.
DOI : 10.1137/1.9781611972719.28

P. [. Castellanos, V. Angel, and . Medina, Nonrigid medical image registration technique as a composition of local warpings, Pattern Recognition, vol.37, issue.11, pp.2141-2154, 2004.
DOI : 10.1016/j.patcog.2003.09.019

[. Chung and J. F. , Bohme : Recursive EM and SAGE-inspired algorithms with application to DOA estimation, Signal Processing IEEE Transactions on, issue.8, pp.532664-2677, 2005.

A. [. Chandola, V. Banerjee, and . Kumar, Anomaly detection, ACM Computing Surveys, vol.41, issue.3, p.15, 2009.
DOI : 10.1145/1541880.1541882

S. [. Carlin and . Chib, Bayesian model choice via Markov chain Monte Carlo, J. R. Statist. Soc.B, vol.57, pp.473-484, 1995.

S. [. Chang and . Chiang, Anomaly detection and classification for hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, vol.40, issue.6, pp.1314-1325, 2002.
DOI : 10.1109/TGRS.2002.800280

M. [. Cappé, E. Charbit, and . Moulines, Recursive Em Algorithm with Applications to Doa Estimation, 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings, p.III?III, 2006.
DOI : 10.1109/ICASSP.2006.1660741

J. [. Celeux and . Diebolt, The SEM algorithm : a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem, Computational statistics quarterly, vol.2, issue.1, pp.73-82, 1985.

E. [. Chib and . Greenberg, Understanding the Metropolis-Hastings algorithm. The American Statistician, pp.327-335, 1995.

L. [. Chen, A. Guo, and . Gao, Convergence and robustness of the Robbins-Monro algorithm truncated at randomly varying bounds, Stochastic Processes and their Applications, pp.217-231, 1988.
DOI : 10.1016/0304-4149(87)90039-1

B. Charlier, Etude des propriétés statistiques des moyennes de Fréchet dans des modèles de déformations pour l'analyse de courbes et d'images en grande dimension, Thèse de doctorat, 2011.

B. Charlier, Necessary and sufficient condition for the existence of a fréchet mean on the circle. arXiv preprint arXiv :1109, 1986.

G. E. Christensen, Consistent Linear-Elastic Transformations for Image Matching, Information processing in medical imaging, pp.224-237, 1999.
DOI : 10.1007/3-540-48714-X_17

[. Cardoso and M. Lavielle, Moulines : Un algorithme d'identification par maximum de vraisemblance pour des données incomplètes. Comptes rendus de l'Académie des sciences, Mathématique, vol.1, issue.3203, pp.363-368, 1995.

E. [. Cappé and . Moulines, On-line expectation-maximization algorithm for latent data models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.11, issue.3, pp.593-613, 2007.
DOI : 10.1111/j.1467-9868.2009.00698.x

E. [. Cappé, T. Moulines, and . Rydén, Inference in hidden Markov models, 2005.

G. Casella and C. P. Robert, Monte Carlo statistical methods, 1999.

R. [. Christensen, M. I. Rabbitt, and . Miller, Deformable templates using large deformation kinematics, IEEE Transactions on Image Processing, vol.5, issue.10, pp.1435-1447, 1996.
DOI : 10.1109/83.536892

L. Valls, J. Gomez-chova, J. Muñoz-marí, J. Vila-francés, . Calpe-maravilla-[-dfn02-]-p et al., Composite kernels for hyperspectral image classification. Geoscience and Remote Sensing LettersArcy : On growth and form Forster et I. Ntzoufras : On Bayesian model and variable selection using MCMC, IEEE Statistics and Computing, vol.3, issue.121, pp.93-9727, 1963.

M. Davy and S. Godsill, Detection of abrupt spectral changes using support vector machines an application to audio signal segmentation, IEEE International Conference on Acoustics Speech and Signal Processing, p.1313, 2002.
DOI : 10.1109/ICASSP.2002.5744044

J. Diebolt, E. H. Ipdjc98-]-m, P. J. Desforges, J. E. Jacob, . B. Cooper et al., Applications of probability density estimation to the detection of abnormal conditions in engineering Large deformation minimum mean squared error template estimation for computational anatomy Moulines : Convergence of a stochastic approximation version of the EM algorithm Rubin : Maximum likelihood from incomplete data via the EM algorithm Morel : Meaningful alignments Morel : Edge detection by helmholtz principle Morel : A grouping principle and four applications. Pattern Analysis and Machine Intelligence Hansen : Discrete-time processing of speech signals Koepfler : Real-time segmentation of moving objects in a video sequence by a contrario detection, stochastic EM algorithm for approximating the maximum likelihood estimate. Markov chain Monte Carlo in practice ISBI Image Processing, 2005. ICIP 2005. IEEE International Conference on, pp.687-703, 1977.

A. [. Daniel and . Schaum, Urchin: an RX-derivative accounting for anisotropies in whitened clutter, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVI, p.769504, 2010.
DOI : 10.1117/12.850222

C. De-stefano, C. Sansone, and M. Vento, To reject or not to reject : that is the question-an answer in case of neural classifiers. Systems, Man, and Cybernetics, Part C : Applications and Reviews Eskin : Anomaly detection over noisy data using learned probability distributions, Proceedings of the International Conference on Machine Learning, pp.84-94, 2000.

M. J. Fauvel-[-fj03-]-b and N. Frey, Spectral and spatial methods for the classification of urban remote sensing data Thèse de doctorat Jojic : Transformation-invariant clustering using the EM alogrithm Moulines : Convergence of the Monte Carlo expectation maximization for curved exponential families. The Annals of Statistics, Fle87] R. Fletcher : Practical Methods of Optimization, pp.311220-1259, 1987.

D. [. Fearnhead and . Prangle, Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation, Annales de l'institut Henri Poincaré, pp.419-474, 1948.
DOI : 10.1111/j.1467-9868.2011.01010.x

G. [. Gauffre, D. Geman, and . Geman, Aircraft infrared radiation modeling Stochastic relaxation, Gibbs distributions, and the Bayesian restauration of images. Pattern Analysis and Machine Intelligence, La Recherche Aerospatiale IEEE Transactions on, vol.1, issue.6, pp.245-265245, 1981.

J. A. Glaunès, S. Joshi, F. Gamboa, J. Loubes, and E. Maza, Template estimation form unlabeled point set data and surfaces for computational anatomy Semi-parametric estimation of shifts, Proceedings of the First International Workshop on Mathematical Foundations of Computational Anatomy-Geometrical and Statistical Methods for Modelling Biological Shape Variability, pp.616-640, 2006.

N. [. Glasbey, . [. Martin, and L. Grosjean, Multimodal microscopy by digital image processing Moisan : A-contrario detectability of spots in textured backgrounds, Journal of Microscopy Journal of Mathematical Imaging and Vision, vol.181, issue.333, pp.225-237313, 1996.

]. D. Gol89 and . Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1989.

]. C. Goo91 and . Goodall, Procrustes methods in the statistical analysis of shape, Journal of the Royal Statistical Society. Series B (Methodological), pp.285-339, 1991.

]. A. Gos05, ]. L. Goshtasbygre93, . R. Gregorygrs96-]-w, S. Gilks, D. J. Richardson et al., -D image registration : for medical, remote sensing, and industrial applications General pattern theory : A mathematical study of regular structures Helmholtz's principle. Perception Markov chain Monte Carlo in practice, GS04] S. Gaffney et P. Smyth : Joint probabilistic curve clustering and alignment. In In Advances in Neural Information Processing Systems 17, pp.795-796, 1993.

J. A. Has70-]-w and . Hastings, Hartigan : Clustering algorithms Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, issue.1, pp.97-109, 1970.

A. [. Hoff, X. Chen, E. M. Yu, . A. Winterhg09-]-b, J. Q. Hasan et al., Enhanced classification performance from multiband infrared imagery IEEE Proceedings of ASILOMAR-29, Sequential EM for unsupervised adaptive Gaussian mixture model based classifier Machine Learning and Data Mining in Pattern Recognition, pp.837-841, 1996.

M. Hairer and J. C. Mattingly, Yet another look at Harris ergodic theorem for Markov chains Random Fields and Applications VI, Seminar on Stochastic Analysis, pp.109-117454, 2007.
DOI : 10.1007/978-3-0348-0021-1_7

URL : http://arxiv.org/abs/0810.2777

]. P. Hub64 and . Huber, Robust estimation of a location parameter, The Annals of Mathematical Statistics, vol.35, issue.1, pp.73-101, 1964.

R. [. Heckman and . Zamar, Comparing the shapes of regression functions, Biometrika, vol.87, issue.1, pp.135-144, 2000.
DOI : 10.1093/biomet/87.1.135

M. Johansson, Dalenbring : SIGGE, a prediction tool for aeronautical IR signatures, and its applications Miller : Landmark matching via large deformation diffeomorphisms, 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, pp.91357-1370, 2000.
DOI : 10.2514/6.2006-3276

]. I. Jol05 and . Jolliffe, Principal component analysis, 2005.

J. Jacq and C. Roux, Registration of 3-D images by genetic optimization, Pattern Recognition Letters, vol.16, issue.8, pp.823-841, 1995.
DOI : 10.1016/0167-8655(95)00051-H

]. S. Kay98 and . Kay, Fundamentals of Statistical signal processing Detection theory, 1998.

A. Kneip and T. Gasser, Statistical tools to analyze data representing a sample of curves. The Annals of Statistics, pp.1266-1305, 1992.

E. Kuhn, M. [. Lavielle, and M. Kuhn, Coupling a stochastic approximation version of EM with an MCMC procedure Lavielle : Maximum likelihood estimation in nonlinear mixed effects models : Kernel RX-algorithm : a nonlinear anomaly detector for hyperspectral imagery. Geoscience and Remote Sensing, ESAIM : Probability and Statistics Computational Statistics & Data Analysis IEEE Transactions on, vol.8, issue.432, pp.115-131, 2004.

J. Karlholm, I. Renhornktat03-]-k, D. Kadota, Y. Tominaga, K. Akiyama et al., Wavelength band selection method formultispectral target detection Detecting outlying samples in microarray data : A critical assessment of the effect of outliers on sample classification An improved adaptive background mixture model for real-time tracking with shadow detection Unwarping of unidirectionally distorted epi images. Medical Imaging Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions Online EM algorithm for mixture with application to internet traffic modeling Discussion of a paper by P. Fearnhead and D. Prangle Moulines : Aircraft classification with a low resolution infrared sensor . Machine Vision and Application Journal Lange : A gradient algorithm locally equivalent to the EM algorithm, Video-Based Surveillance SystemsLég00] S. Léger : Analyse stochastique de signaux multi-fractaux et estimations de paramètres Thèse de doctoratLEK + 03] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur et J. Srivastava : A comparative study of anomaly detection schemes in network intrusion detection Proceedings of the third SIAM international conference on data mining, pp.6786-679530, 1986.

C. [. Li, X. Georghiades, and . Wang, Blind Multiuser Detection in Uplink CDMA With Multipath Fading: A Sequential EM Approach, IEEE Transactions on Communications, vol.52, issue.1, pp.71-81, 2004.
DOI : 10.1109/TCOMM.2003.822172

J. S. Liu, F. Liang, and W. H. Wong, The Multiple-Try Method and Local Optimization in Metropolis Sampling, Journal of the American Statistical Association, vol.95, issue.449, pp.95121-134, 2000.
DOI : 10.1080/01621459.2000.10473908

B. [. Li, S. K. Manjunath, and . Mitra, A contour-based approach to multisensor image registration, IEEE Transactions on Image Processing, vol.4, issue.3, pp.320-334, 1995.
DOI : 10.1109/83.366480

W. Leigh, M. Paz, and R. Purvis, An analysis of a hybrid neural network and pattern recognition technique for predicting short-term increases in the NYSE composite index, Omega, vol.30, issue.2, pp.69-76, 2002.
DOI : 10.1016/S0305-0483(01)00057-3

G. [. ?atuszy?ski, J. S. Roberts, and . Rosenthal, Adaptive Gibbs samplers and related MCMC methods, The Annals of Applied Probability, vol.23, issue.1, pp.66-98, 2013.
DOI : 10.1214/11-AAP806

]. S. Lrvd10a, A. Lefebvre, S. Roblin, G. Varet, and . Durand, Metamodeling of aircraft infrared signature dispersion AStA Advances in Statistical Analysis, pp.405-422, 2010.

]. S. Lrvd10b, A. Lefebvre, S. Roblin, G. Varet, and . Durand, A methodological approach for statistical evaluation of aircraft infrared signature, Reliability Engineering & System Safety, vol.95, issue.5, pp.484-493, 2010.

M. Li and J. Tian, Anomaly detection for hyperspectral images based on improved RX algorithm, Proc. SPIE, p.6787, 2007.

]. D. Lue03, . [. Luenberger, W. H. Liu, . Wong, and . Kong, Linear and nonlinear programming Covariance structure and convergence rate of the Gibbs sampler with various scans, Biometrika, vol.81, issue.1, pp.27-40, 1994.

X. Liu and M. C. Yang, Simultaneous curve registration and clustering for functional data, Computational Statistics & Data Analysis, vol.53, issue.4, pp.1361-1376, 2009.
DOI : 10.1016/j.csda.2008.11.019

]. R. Mar76, Manolakis : Taxonomy of detection algorithms for hyperspectral imaging applications Maronna : Robust M-estimators of multivariate location and scatter. The annals of statistics, Optical Engineering, vol.44, issue.6, pp.66403-066403, 1976.

]. G. Mat75 and . Matheron, Random sets and integral geometry, 1975.

R. [. Morokoff and . Caflisch, Quasi-Random Sequences and Their Discrepancies, SIAM Journal on Scientific Computing, vol.15, issue.6, pp.1251-1279, 1994.
DOI : 10.1137/0915077

M. [. Matteoli, G. Diani, and . Corsini, A tutorial overview of anomaly detection in hyperspectral images. Aerospace and Electronic Systems Magazine, IEEE, issue.7, pp.255-283, 2010.

C. [. Mira and . Geyer, Ordering Monte Carlo Markov chains, School of Statistics, 1999.

P. Monasse and F. Guichard, Fast computation of a contrast-invariant image representation, IEEE Transactions on Image Processing, vol.9, issue.5, pp.860-872, 2000.
DOI : 10.1109/83.841532

]. A. Mir01 and . Mira, Ordering and improving the performance of monte carlo markov chains, Statistical Science, pp.340-350, 2001.

M. L. Marx and R. J. Larsen, Introduction to mathematical statistics and its applications, 2006.

A. Mira and F. Leisen, Covariance ordering for discrete and continuous time Markov chains, Statistica Sinica, vol.19, issue.2, p.651, 2009.

D. [. Myers and . Montgomery, Response surface methodology, 1988.

J. [. Masnou, D. Manolakis, G. A. Marden, . J. Shaw, M. I. Ma et al., Level lines based disocclusion Hyperspectral image processing for automatic target detection applications Bayesian template estimation in computational anatomy Rubin : Maximum likelihood estimation via the ECM algorithm : A general framework : Quantum efficiency and quantum yield of an hgcdte infrared sensor array, Proc. of IEEE ICIPMRR + 53] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller et E. Teller : Equation of state calculations by fast computing machines. The journal of chemical physics, pp.259-26379, 1953.

G. [. Manolakis and . Shaw, Detection algorithms for hyperspectral imaging applications, IEEE Signal Processing Magazine, vol.19, issue.1, pp.29-43, 2002.
DOI : 10.1109/79.974724

D. [. Mcinerney and . Terzopoulos, Deformable models in medical image analysis, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis, pp.91-108, 1996.
DOI : 10.1109/MMBIA.1996.534069

C. [. Mei, H. Zhao, Y. Huo, and . Sun, An adaptive kernel method for anomaly detection in hyperspectral imagery In Intelligent Information Technology Application, IITA'08. Second International Symposium on Nicholls, C. Fox et A. M. Watt : Coupled MCMC with a randomized acceptance probability. arXiv preprint arXiv :1205.6857, pp.874-878, 2008.

G. [. Neal and . Hinton, A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants, Learning in graphical models, pp.355-368, 1998.
DOI : 10.1007/978-94-011-5014-9_12

J. [. Noah, J. Kristl, B. P. Schroeder, and . Sandford, NIRATAM- NATO infrared air target model, Surveillance Technologies, Proceedings of SPIE, pp.275-282, 1991.
DOI : 10.1117/12.44537

J. Neyman, E. S. Pearson, D. M. Pinheiro, ]. S. Batespbf10, F. Pandolfi et al., Paragios : Geometric level set methods in imaging, vision, and graphics Linear mixed-effects models : basic concepts and examples Friel : A generalization of the Multiple-try Metropolis algorithm for Bayesian estimation and model selection [PD12] A. Petralias et P. Dellaportas : An MCMC model search algorithm for regression problems, International Conference on Artificial Intelligence and StatisticsPes73] P. H. Peskun : Optimum Monte-Carlo sampling using Markov chainsPJ92] B. T. Polyak et A. B. Juditsky : Acceleration of stochastic approximation by averaging. SIAM Journal on Control and Optimization, pp.581-5881, 1973.

A. [. Pokrajac, L. J. Lazarevic, and . Latecki, Incremental Local Outlier Detection for Data Streams, 2007 IEEE Symposium on Computational Intelligence and Data Mining, pp.504-515, 2007.
DOI : 10.1109/CIDM.2007.368917

P. [. Plaza, J. Martinez, R. Plaza, and . Perez, Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations. Geoscience and Remote Sensing, Pol90] B. T. Polyak : New method of stochastic approximation type. Automat. Remote Control, pp.466-479937, 1990.

A. Patcha and J. Park, An overview of anomaly detection techniques: Existing solutions and latest technological trends, Computer Networks, vol.51, issue.12, pp.3448-3470, 2007.
DOI : 10.1016/j.comnet.2007.02.001

]. F. Qldp99, J. S. Quintana, G. E. Liu, and . Pino, Monte Carlo EM with importance reweighting and its applications in random effects models : Estimating smooth monotone functions, Computational statistics & data analysis Journal of the Royal Statistical Society : Series B (Statistical Methodology), vol.29, issue.602, pp.429-444365, 1998.

J. O. Ramsay, [. Richard, and L. D. , Functional data analysis Wiley Online Library Cohen : A new image registration technique with free boundary constraints : application to mammography, Robert et G. Casella : Monte Carlo statistical methods, pp.166-196, 2003.

F. Rousseau, S. Faisan, F. Heitz, J. Armspach, Y. Chevalier et al., Une approche a contrario pour la détection de changements dans des images irm multimodales 3d, Nitzberg : A CFAR adaptive matched filter detector. Aerospace and Electronic Systems, pp.208-216, 1992.

J. O. Ramsay, X. [. Li, S. Robbins, . [. Monro, S. P. Rao et al., Curve registration, 43rd AIAA Aerospace Sciences Meeting and ExhibitRob96] C. P. Robert : Méthodes de Monte Carlo par chaînes de Markov, pp.351-363, 1951.
DOI : 10.1111/1467-9868.00129

G. O. Roberts and J. S. Rosenthal, General state space Markov chains and MCMC algorithms, Probability Surveys, vol.1, issue.0, pp.20-71, 2004.
DOI : 10.1214/154957804100000024

H. Ringberg, A. Soule, J. Rexford, C. S. Diot-[-ry90-]-i, X. Reed et al., Ruppert : Efficient estimations from a slowly convergent robbinsmonro process Rapport technique Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. Acoustics, Speech and Signal Processing Matisse : advanced earth modeling for imaging and scene simulation : Anomaly detection from hyperspectral imagery Eismann : Target detection using infrared spectral sensors, Sensitivity of pca for traffic anomaly detection. ACM SIGMETRICS Performance Evaluation Review International Symposium on Remote Sensing International Society for Optics and PhotonicsSC78] H. Sakoe et S. Chiba : Dynamic programming algorithm optimization for spoken word recognition. Acoustics, Speech and Signal Processing SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation International Society for Optics and Photonics, pp.109-1201760, 1978.

E. Robert and . Schapire, The boosting approach to machine learning : An overview, Lecture Notes In Statistics, pp.149-172, 2003.

]. A. Sch07 and . Schaum, Hyperspectral anomaly detection beyond RX, Defense and Security Symposium, pp.656502-656502, 2007.

]. J. Ser82 and . Serra, Image analysis and mathematical morphology, 1982.

M. Sato and S. Ishii, On-line EM Algorithm for the Normalized Gaussian Network, Neural Computation, vol.39, issue.2, pp.407-432, 2000.
DOI : 10.1162/089976698300016963

]. B. Sil85 and . Silverman, Some aspects of the spline smoothing approach to non-parametric regression curve fitting, Journal of the Royal Statistical Society. Series B, vol.47, pp.1-52, 1985.

H. E. Solberg and A. Lahti, Detection of Outliers in Reference Distributions: Performance of Horn's Algorithm, Clinical Chemistry, vol.51, issue.12, pp.2326-2332, 2005.
DOI : 10.1373/clinchem.2005.058339

M. [. Singh and . Markou, An approach to novelty detection applied to the classification of image regions. Knowledge and Data Engineering, IEEE Transactions on, vol.16, issue.4, pp.396-407, 2004.

C. Spence, L. Parra, and P. , Sajda : Detection, synthesis and compression in mammographic image analysis with a hierarchical image probability model : Multidimensional signal processing for electro-optical target detection, Mathematical Methods in Biomedical Image Analysis OE/LASE'90 International Society for Optics and Photonics, pp.3-10, 1990.

A. [. Stocker and . Schaum, Application of stochastic mixing models to hyperspectral detection problems, AeroSense'97 International Society for Optics and Photonics, pp.47-60, 1997.

M. [. Samorodnitsky and . Taqqu, Stable non-Gaussian processes. Stochastic Models with Infinite Variance, 1994.

M. L. Stein, Fast and Exact Simulation of Fractional Brownian Surfaces, Journal of Computational and Graphical Statistics, vol.11, issue.3, pp.587-599744, 2002.
DOI : 10.1198/106186002466

B. [. Taitano, K. W. Geier, and . Bauer, A Locally Adaptable Iterative RX Detector, EURASIP Journal on Advances in Signal Processing, vol.2010, issue.1, 2010.
DOI : 10.1109/83.552103

]. E. Thi00 and . Thiémard, Sur le calcul et la majoration de la discrépance à l'origine

D. Telesca and L. Y. Inoue, Bayesian Hierarchical Curve Registration, Tie95] L. Tierney : A note on Metropolis-Hastings kernels for general state spaces, pp.328-3391, 1995.
DOI : 10.1198/016214507000001139

]. D. Tit84 and . Titterington, Recursive parameter estimation using incomplete data, Journal of the Royal Statistical Society. Series B (Methodological), pp.257-267, 1984.

U. [. Thévenaz, M. Ruttimann, . D. Unser-[-ts54-]-r, M. M. Tuddenham, and . Snyder, A pyramid approach to subpixel registration based on intensity, Thèse de doctoratTY05] A. Trouvé et L. Younes : Local geometry of deformable templates. SIAM journal on mathematical analysisVap98] V. N. Vapnik : Statistical learning theory, pp.27-41183528, 1954.
DOI : 10.1109/83.650848

]. S. Var10 and . Varet, Développement de méthodes statistiques pour la prédiction d'un gabarit de signature infrarouge, Thèse de doctorat, 2010.

A. [. Visser, . Petersen-[-wg97-]-k, T. Wang, . C. Gasser-[-wt90-]-g, M. A. Wei et al., Alignment of curves by dynamic time warping. The Annals of Statistics Wolfinger : Laplace's approximation for non linear mixed models A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms Almost sure convergence of Titterington's recursive estimator for mixture models, Wu83] C. F. Wu : On the convergence properties of the EM algorithm, pp.2893-29351251, 1983.

X. Yu, L. E. Hoff, I. S. Reed, A. M. Chen, and L. B. Stotts, Automatic target detection and recognition in multiband imagery : A unified ml detection and estimation approach Comparative performance analysis of adaptive multispectral detectors, Image Processing IEEE Transactions on Signal Processing IEEE Transactions on, vol.6, issue.18, pp.143-156, 1993.

J. Zhang and J. Chen, Statistical inferences for functional data. The Annals of Statistics, pp.1052-1079, 2007.

B. Zitova and J. Flusser, Image registration methods : a survey Image and vision computing, Zho08] Z. Zhong : Curve registration in functional data analysis. ProQuest, pp.977-1000, 2003.

H. Ziezold, On Expected Figures and a Strong Law of Large Numbers for Random Elements in Quasi-Metric Spaces, Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions , Random Processes and of the 1974 European Meeting of Statisticians, pp.591-602, 1977.
DOI : 10.1007/978-94-010-9910-3_63