Automatically finding clusters in normalized cuts

Abstract :

Normalized Cuts is a state-of-the-art spectral method for clustering. By applying spectral techniques, the data becomes easier to cluster and then k-means is classically used. Unfortunately the number of clusters must be manually set and it is very sensitive to initialization. Moreover, k-means tends to split large clusters, to merge small clusters, and to favor convex-shaped clusters. In this work we present a new clustering method which is parameterless, independent from the original data dimensionality and from the shape of the clusters. It only takes into account inter-point distances and it has no random steps. The combination of the proposed method with normalized cuts proved successful in our experiments.

Type de document :
Article dans une revue
Pattern Recognition, Elsevier, 2011, 44 (7), pp.1372-1386. 〈10.1016/j.patcog.2011.01.003〉
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger
Contributeur : Admin Télécom Paristech <>
Soumis le : mercredi 12 octobre 2011 - 19:13:20
Dernière modification le : jeudi 11 janvier 2018 - 06:23:38
Document(s) archivé(s) le : mardi 13 novembre 2012 - 16:36:37


Fichiers produits par l'(les) auteur(s)



Mariano Tepper, Pablo Musé, A. Almansa, Marta Mejail. Automatically finding clusters in normalized cuts. Pattern Recognition, Elsevier, 2011, 44 (7), pp.1372-1386. 〈10.1016/j.patcog.2011.01.003〉. 〈hal-00631620〉



Consultations de la notice


Téléchargements de fichiers