A Novel Meta-Heuristic Approach for Optical Monitoring-Tree Design in WDM Networks

Abstract :

Thanks to recent advances in WDM technologies, an optical fiber is capable to carry up to 200 wavelengths operating at 40 Gbps each. In such high speed networks, service disruptions caused by network failures (e.g., fiber cut, amplifier dysfunction) may lead to high data losses. A network operator should be able to promptly locate such failures, in order to perform fast restoration. Hence, an efficient fault detection and localization mechanism is mandatory for reliable network design. In previous work, we have introduced the concept of monitoring-trees (m-trees) to achieve fast link failure detection and localization. We have proposed an integer linear programming (ILP) approach for the design of an m-tree solution that minimizes the number of required optical monitors, while achieving unambiguous failure detection and localization. In this paper, we propose a novel approach, based on the well known simulated annealing meta-heuristic, for the m-tree design in WDM networks. Simulations conducted in this study show the same results as the ILP approach at much lower computation time. Our proposal can thus be applied to large-sized and very large-sized networks.

Type de document :
Communication dans un congrès
IEEE International Conference on Optical Network Design and Modeling, Apr 2012, Colchester, United Kingdom. IEEE International Conference on Optical Network Design and Modeling, pp.1-6, 2012, 〈10.1109/ONDM.2012.6210188〉
Liste complète des métadonnées

https://hal-imt.archives-ouvertes.fr/hal-01326284
Contributeur : Admin Télécom Paristech <>
Soumis le : vendredi 3 juin 2016 - 13:55:38
Dernière modification le : jeudi 11 janvier 2018 - 01:56:26

Identifiants

Citation

E. A. Doumith, S. Al Zahr, Maurice Gagnaire. A Novel Meta-Heuristic Approach for Optical Monitoring-Tree Design in WDM Networks. IEEE International Conference on Optical Network Design and Modeling, Apr 2012, Colchester, United Kingdom. IEEE International Conference on Optical Network Design and Modeling, pp.1-6, 2012, 〈10.1109/ONDM.2012.6210188〉. 〈hal-01326284〉

Partager

Métriques

Consultations de la notice

29