Function-indexed empirical processes based on an infinite source Poisson transmission stream

Abstract : We study the asymptotic behavior of empirical processes generated by measurable bounded functions of an infinite source Poisson transmission process when the session length have infinite variance. In spite of the boundedness of the function, the normalized fluctuations of such an empirical process converge to a non-Gaussian stable process. This phenomenon can be viewed as caused by the long-range dependence in the transmission process. Completing previous results on the empirical mean of similar types of processes, our results on non-linear bounded functions exhibit the influence of the limit transmission rate distribution at high session lengths on the asymptotic behavior of the empirical process. As an illustration, we apply the main result to estimation of the distribution function of the steady state value of the transmission process.
Document type :
Journal articles
Complete list of metadatas

https://hal-imt.archives-ouvertes.fr/hal-00471634
Contributor : François Roueff <>
Submitted on : Monday, July 9, 2012 - 4:24:38 PM
Last modification on : Tuesday, June 18, 2019 - 3:12:03 PM
Long-term archiving on : Wednesday, October 10, 2012 - 4:05:11 AM

Files

bej367.pdf
Files produced by the author(s)

Identifiers

Citation

François Roueff, Gennady Samorodnitsky, Philippe Soulier. Function-indexed empirical processes based on an infinite source Poisson transmission stream. Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2012, pp.783-802. ⟨10.3150/11-BEJ367⟩. ⟨hal-00471634v3⟩

Share

Metrics

Record views

394

Files downloads

197