1-D non-periodic homogenization for the seismic wave equation

Abstract : When considering numerical acoustic or elastic wave propagation in media containing small heterogeneities with respect to the minimum wavelength of the wavefield, being able to upscale physical properties (or homogenize them) is valuable mainly for two reasons. First, replacing the original discontinuous and very heterogeneous medium by a smooth and more simple one, is a judicious alternative to the necessary fine and difficult meshing of the original medium required by many wave equation solvers. Second, it helps to understand what properties of a medium are really ‘seen' by the wavefield propagating through, which is an important aspect in an inverse problem approach. This paper is an attempt of a pedagogical introduction to non-periodic homogenization in 1-D, allowing to find the effective wave equation and effective physical properties, of the elastodynamics equation in a highly heterogeneous medium. It can be extrapolated from 1-D to a higher space dimensions. This development can be seen as an extension of the classical two-scale homogenization theory applied to the elastic wave equation in periodic media, with this limitation that it does not hold beyond order 1 in the asymptotic expansion involved in the classical theory.
Type de document :
Article dans une revue
Geophysical Journal International, Oxford University Press (OUP), 2010, 181 (2), pp.897-910. <10.1111/j.1365-246X.2010.04529.x>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00538413
Contributeur : Eva Fareau <>
Soumis le : vendredi 16 juin 2017 - 15:34:49
Dernière modification le : dimanche 18 juin 2017 - 01:06:59

Fichier

181-2-897.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Yann Capdeville, Laurent Guillot, Jean-Jacques Marigo. 1-D non-periodic homogenization for the seismic wave equation. Geophysical Journal International, Oxford University Press (OUP), 2010, 181 (2), pp.897-910. <10.1111/j.1365-246X.2010.04529.x>. <hal-00538413>

Partager

Métriques

Consultations de
la notice

140

Téléchargements du document

3